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Part I

Data Structures and Algorithms



Chapter

1
Primitive Types

Representation is the essence of programming.

— “The Mythical Man Month,”
F. P. Brooks, 1975

A program updates variables in memory according to its instructions. Variables come in types—a
type is a classification of data that spells out possible values for that type and the operations that
can be performed on it. A type can be provided by the language or defined by the programmer.
Many languages provide types for Boolean, integer, character and floating point data. Often, there
are multiple integer and floating point types, depending on signedness and precision. The width of
these types is the number of bits of storage a corresponding variable takes in memory. For example,
most implementations of C++ use 32 or 64 bits for an int. In Java an int is always 32 bits.

Primitive types boot camp

Writing a program to count the number of bits that are set to 1 in an integer is a good way to get
up to speed with primitive types. The following program tests bits one-at-a-time starting with the
least-significant bit. It illustrates shifting and masking; it also shows how to avoid hard-coding the
size of the integer word.

public static short countBits(int x) {

short numBits = 0;

while (x != 0) {

numBits += (x & 1);

x >>>= 1;

}

return numBits;

}

Since we perform O(1) computation per bit, the time complexity is O(n), where n is the number of
bits in the integer word. Note that, by definition, the time complexity is for the worst-case input,
which for this example is the word (111 . . . 11)2. In the best case, the time complexity is O(1), e.g., if
the input is 0. The techniques in Solution 1.1 on the facing page, which is concerned with counting
the number of bits modulo 2, i.e., the parity, can be used to improve the performance of the program
given above.

Know your primitive types

You should know the primitive types very intimately, e.g., sizes, ranges, signedness properties, and
operators. You should also know the utility methods for primitive types in Math. It’s important to
understand the difference between box-types (Integer, Double, etc.) and primitive types, and the
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Be very comfortable with the bitwise operators, particularly XOR.

Understand how to use masks and create them in an machine independent way.

Know fast ways to clear the lowermost set bit (and by extension, set the lowermost 0, get its
index, etc.)

Understand signedness and its implications to shifting.

Consider using a cache to accelerate operations by using it to brute-force small inputs.

Be aware that commutativity and associativity can be used to perform operations in parallel
and reorder operations.

Table 1.1: Top Tips for Primitive Types

role of auto-boxing, and the limits of auto-boxing. The Random library is also very helpful, especially
when writing tests.
• Be very familiar with the bit-wise operators such as 6&4,1|2, 8>>1, -16>>>2, 1<<10, ˜0, 15ˆx.
• Know the constants denoting the maximum and minimum values for numeric types, e.g.,
Integer.MIN_VALUE, Float.MAX_VALUE, Double.SIZE, Boolean.TRUE.

• Know the box-types, especially the factories, e.g., Double.valueOf(“1.23”),
Boolean.valueOf(true), Integer.parseInt(“42”), Float.toString(-1.23).

• Prefer the box-type static methods for comparing values, e.g., Double.compare(x,1.23) ==

0 rather than x == 1.23—these methods are far more resilient to floating point values like
infinity, negative infinity, NaN. Additionally, when comparing floating point numbers, it’s
often appropriate to use an absolute/relative tolerance.

• The key methods in Math are abs(-34.5), ceil(2.17), floor(3.14), min(x,-4), max(3.14,
y), pow(2.71, 3.14), and sqrt(225).

• Understand the limits of autoboxing, e.g., why Character[] C = new char[]{’a’,’b’};

will not compile.
• Know how to interconvert integers, characters, and strings, e.g., Character.getNumericValue(x)

(or just x - ’0’) to convert a digit character to an integer, String.valueOf(123) to convert
an integer to a string, etc.

• The key methods in Random are nextInt(16), nextInt(), nextBoolean(), and nextDouble()

(which returns a value in [0, 1)).

1.1 Computing the parity of a word

The parity of a binary word is 1 if the number of 1s in the word is odd; otherwise, it is 0. For
example, the parity of 1011 is 1, and the parity of 10001000 is 0. Parity checks are used to detect
single bit errors in data storage and communication. It is fairly straightforward to write code that
computes the parity of a single 64-bit word.

How would you compute the parity of a very large number of 64-bit words?
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Hint: Use a lookup table, but don’t use 264 entries!

Solution: The brute-force algorithm iteratively tests the value of each bit while tracking the number
of 1s seen so far. Since we only care if the number of 1s is even or odd, we can store the number
modulo 2.

public static short parity(long x) {

short result = 0;

while (x != 0) {

result ^= (x & 1);

x >>>= 1;

}

return result;

}

The time complexity is O(n), where n is the word size.
We will now describe several algorithms for parity computation that are superior to the brute-

force algorithm.
The first improvement is based on erasing the lowest set bit in a word in a single opera-

tion, thereby improving performance in the best- and average-cases. Specifically, the expres-
sion y = x & ~(x − 1), where & is the bitwise-AND operator and ~ is the bitwise complement
operator. The variable y is 1 at exactly the lowest bit of x that is 1; all other bits in y are
0. For example, if x = (00101100)2, then x − 1 = (00101011)2, ~(x − 1) = (11010100)2, and
y = (00101100)2 & (11010100)2 = (00000100)2. This calculation is robust—it is correct for unsigned
and two’s-complement representations. Consequently, this bit may be removed from x by comput-
ing x ⊕ y, where ⊕ is the bitwise-XOR function. The time complexity is O(s), where s is the number
of bits set to 1 in x.

public static short parity(long x) {

short result = 0;

while (x != 0) {

result ^= 1;

x &= (x - 1); // Drops the lowest set bit of x.

}

return result;

}

Let k be the number of bits set to 1 in a particular word. (For example, for 10001010, k = 3.) Then
time complexity of the algorithm above is O(k).

The fact that x & ~(x−1) isolates the lowest bit that is 1 in x is important enough that you should
memorize it. However, it is also fairly easy to derive. First, suppose x is not 0, i.e., it has has a bit
that is one. Subtracting one from x changes the rightmost bit to zero and sets all the lower bits to
one (if you add one now, you get the original value back). The effect is to mask out the rightmost
one. Therefore x & ~(x − 1) has a single bit set to one, namely, the rightmost 1 in x. Now suppose x
is 0. Subtracting one from x underflows, resulting in a word in which all bits are set to one. Again,
x & ~(x − 1) is 0.

A similar derivation shows that x &(x − 1) replaces the lowest bit that is 1 with 0. For example,
if x = (00101100)2, then x − 1 = (00101011)2, so x &(x − 1) = (00101100)2&(00101011)2 = (00101000)2.
This fact can also be very useful.
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We now consider a qualitatively different approach. The problem statement refers to computing
the parity for a very large number of words. When you have to perform a large number of parity
computations, and, more generally, any kind of bit fiddling computations, two keys to performance
are processing multiple bits at a time and caching results in an array-based lookup table.

First we demonstrate caching. Clearly, we cannot cache the parity of every 64-bit integer—we
would need 264 bits of storage, which is of the order of ten trillion exabytes. However, when
computing the parity of a collection of bits, it does not matter how we group those bits, i.e., the
computation is associative. Therefore, we can compute the parity of a 64-bit integer by grouping its
bits into four nonoverlapping 16 bit subwords, computing the parity of each subwords, and then
computing the parity of these four subresults. We choose 16 since 216 = 65536 is relatively small,
which makes it feasible to cache the parity of all 16-bit words using an array. Furthermore, since 16
evenly divides 64, the code is simpler than if we were, for example, to use 10 bit subwords.

We illustrate the approach with a lookup table for 2-bit words. The cache is 〈0, 1, 1, 0〉—these
are the parities of (00), (01), (10), (11), respectively. To compute the parity of (11001010) we would
compute the parities of (11), (00), (10), (10). By table lookup we see these are 0, 0, 1, 1, respectively,
so the final result is the parity of 0, 0, 1, 1 which is 0.

To lookup the parity of the first two bits in (11101010), we right shift by 6, to get (00000011), and
use this as an index into the cache. To lookup the parity of the next two bits, i.e., (10), we right shift
by 4, to get (10) in the two least-significant bit places. The right shift does not remove the leading
(11)—it results in (00001110). We cannot index the cache with this, it leads to an out-of-bounds
access. To get the last two bits after the right shift by 4, we bitwise-AND (00001110) with (00000011)
(this is the “mask” used to extract the last 2 bits). The result is (00000010). Similar masking is
needed for the two other 2-bit lookups.

public static short parity(long x) {

final int MASK_SIZE = 16;

final int BIT_MASK = 0xFFFF;

return (short) (

precomputedParity[(int)((x >>> (3 * MASK_SIZE)) & BIT_MASK)]

^ precomputedParity[(int)((x >>> (2 * MASK_SIZE)) & BIT_MASK)]

^ precomputedParity[(int)((x >>> MASK_SIZE) & BIT_MASK)]

^ precomputedParity[(int)(x & BIT_MASK)]);

}

The time complexity is a function of the size of the keys used to index the lookup table. Let L be
the width of the words for which we cache the results, and n the word size. Since there are n/L
terms, the time complexity is O(n/L), assuming word-level operations, such as shifting, take O(1)
time. (This does not include the time for initialization of the lookup table.)

We can improve on theO(n) worst-case time complexity of the previous algorithms by exploiting
some simple properties of parity. Specifically, the XOR of two bits is defined to be 0 if both bits are
0 or both bits are 1; otherwise it is 1. XOR has the property of being associative, i.e., it does not
matter how we group bits, as well as commutative, i.e., the order in which we perform the XORs
does not change the result. The XOR of a group of bits is its parity. We can exploit this fact to use
the CPU’s word-level XOR instruction to process multiple bits at a time.

For example, the parity of 〈b63, b62, . . . , b3, b2, b1, b0〉 equals the parity of the XOR of
〈b63, b62, . . . , b32〉 and 〈b31, b30, . . . , b0〉. The XOR of these two 32-bit values can be computed with a
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single shift and a single 32-bit XOR instruction. We repeat the same operation on 32-, 16-, 8-, 4-,
2-, and 1-bit operands to get the final result. Note that the leading bits are not meaningful, and we
have to explicitly extract the result from the least-significant bit.

We illustrate the approach with an 8-bit word. The parity of (11010111) is the same as the parity
of (1101) XORed with (0111), i.e., of (1010). This in turn is the same as the parity of (10) XORed with
(10), i.e., of (00). The final result is the XOR of (0) with (0), i.e., 0. Note that the first XOR yields
(11011010), and only the last 4 bits are relevant going forward. The second XOR yields (11101100),
and only the last 2 bits are relevant. The third XOR yields (10011010). The last bit is the result, and
to extract it we have to bitwise-AND with (00000001).

public static short parity(long x) {

x ^= x >>> 32;

x ^= x >>> 16;

x ^= x >>> 8;

x ^= x >>> 4;

x ^= x >>> 2;

x ^= x >>> 1;

return (short)(x & 0x1);

}

The time complexity is O(log n), where n is the word size.
Note that we can combine caching with word-level operations, e.g., by doing a lookup in the

XOR-based approach once we get to 16 bits.
The actual runtimes depend on the input data, e.g., the refinement of the brute-force algorithm

is very fast on sparse inputs. However, for random inputs, the refinement of the brute-force is
roughly 20% faster than the brute-force algorithm. The table-based approach is four times faster
still, and using associativity reduces run time by another factor of two.

Variant: Write expressions that use bitwise operators, equality checks, and Boolean operators to do
the following in O(1) time.
• Right propagate the rightmost set bit in x, e.g., turns (01010000)2 to (01011111)2.
• Compute x modulo a power of two, e.g., returns 13 for 77 mod 64.
• Test if x is a power of 2, i.e., evaluates to true for x = 1, 2, 4, 8, . . . , false for all other values.
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Chapter

2
Arrays

The machine can alter the scanned symbol and its behavior
is in part determined by that symbol, but the symbols on
the tape elsewhere do not affect the behavior of the machine.

— “Intelligent Machinery,”
A. M. Turing, 1948

The simplest data structure is the array, which is a contiguous block of memory. It is usually
used to represent sequences. Given an array A, A[i] denotes the (i + 1)th object stored in the
array. Retrieving and updating A[i] takes O(1) time. Insertion into a full array can be handled by
resizing, i.e., allocating a new array with additional memory and copying over the entries from the
original array. This increases the worst-case time of insertion, but if the new array has, for example,
a constant factor larger than the original array, the average time for insertion is constant since
resizing is infrequent. Deleting an element from an array entails moving all successive elements
one over to the left to fill the vacated space. For example, if the array is 〈2, 3, 5, 7, 9, 11, 13, 17〉, then
deleting the element at index 4 results in the array 〈2, 3, 5, 7, 11, 13, 17, 0〉. (We do not care about the
last value.) The time complexity to delete the element at index i from an array of length n isO(n− i).
The same is true for inserting a new element (as opposed to updating an existing entry).

Array boot camp

The following problem gives good insight into working with arrays: Your input is an array of
integers, and you have to reorder its entries so that the even entries appear first. This is easy if you
use O(n) space, where n is the length of the array. However, you are required to solve it without
allocating additional storage.

When working with arrays you should take advantage of the fact that you can operate efficiently
on both ends. For this problem, we can partition the array into three subarrays: Even, Unclassified,
and Odd, appearing in that order. Initially Even and Odd are empty, and Unclassified is the entire
array. We iterate through Unclassified, moving its elements to the boundaries of the Even and Odd
subarrays via swaps, thereby expanding Even and Odd, and shrinking Unclassified.

public static void evenOdd(int[] A) {

int nextEven = 0, nextOdd = A.length - 1;

while (nextEven < nextOdd) {

if (A[nextEven] % 2 == 0) {

nextEven++;

} else {

int temp = A[nextEven];

A[nextEven] = A[nextOdd];

A[nextOdd --] = temp;
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}

}

}

The additional space complexity is clearly O(1)—a couple of variables that hold indices, and a
temporary variable for performing the swap. We do a constant amount of processing per entry, so
the time complexity is O(n).

Array problems often have simple brute-force solutions that useO(n) space, but there are subtler
solutions that use the array itself to reduce space complexity to O(1).

Filling an array from the front is slow, so see if it’s possible to write values from the back.

Instead of deleting an entry (which requires moving all entries to its right), consider overwriting
it.

When dealing with integers encoded by an array consider processing the digits from the back
of the array. Alternately, reverse the array so the least-significant digit is the first entry.

Be comfortable with writing code that operates on subarrays.

It’s incredibly easy to make off-by-1 errors when operating on arrays—reading past the last
element of an array is a common error which has catastrophic consequences.

Don’t worry about preserving the integrity of the array (sortedness, keeping equal entries
together, etc.) until it is time to return.

An array can serve as a good data structure when you know the distribution of the elements in
advance. For example, a Boolean array of length W is a good choice for representing a subset
of {0, 1, . . . ,W − 1}. (When using a Boolean array to represent a subset of {1, 2, 3, . . . ,n}, allocate
an array of size n + 1 to simplify indexing.) .

When operating on 2D arrays, use parallel logic for rows and for columns.

Sometimes it’s easier to simulate the specification, than to analytically solve for the result. For
example, rather than writing a formula for the i-th entry in the spiral order for an n × n matrix,
just compute the output from the beginning.

Table 2.1: Top Tips for Arrays

Know your array libraries

The basic array type in Java is fixed-size. You should know the Java Arrays utilities very intimately;
these simplify working with the basic array type. The ArrayList type implements a dynamically
resized array, and is a good replacement for the basic Java array; it’s more flexible, and has more
API methods. Be sure to read the review of List, ArrayList, and Collections on Page 19.

• Know the syntax for allocating and initializing an array, i.e., new int[]{1,2,3}.
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• Understand how to instantiate a 2D array—new Integer[3][] creates an array which will
hold three rows, each of these must be explicitly assigned.

• Don’t forget the length of an array is given by the length field, unlike Collections, which
uses the size() method, and String, which use the length() method.

• The Arrays class consists of a set of static utility methods. All of them are important: asList()
(more on this later), binarySearch(A, 641), copyOf(A), copyOfRange(A, 1,5), equals(A,
B), fill(A, 42), find(A, 28), sort(A), sort(A,cmp), toString().

– Understand the variants of these methods, e.g., how to create a copy of a subarray.
– Understand what “deep” means when checking equality of arrays, and hashing them.

Both Arrays and Collections have binarySearch() and sort()methods. These are nuanced—we
discuss them in detail on Page 42 and on Page 51.

2.1 The Dutch national flag problem

The quicksort algorithm for sorting arrays proceeds recursively—it selects an element (the “pivot”),
reorders the array to make all the elements less than or equal to the pivot appear first, followed by
all the elements greater than the pivot. The two subarrays are then sorted recursively.

Implemented naively, quicksort has large run times and deep function call stacks on arrays with
many duplicates because the subarrays may differ greatly in size. One solution is to reorder the
array so that all elements less than the pivot appear first, followed by elements equal to the pivot,
followed by elements greater than the pivot. This is known as Dutch national flag partitioning,
because the Dutch national flag consists of three horizontal bands, each in a different color.

As an example, assuming that black precedes white and white precedes gray, Figure 2.1(b) is a
valid partitioning for Figure 2.1(a). If gray precedes black and black precedes white, Figure 2.1(c)
is a valid partitioning for Figure 2.1(a).

Generalizing, suppose A = 〈0, 1, 2, 0, 2, 1, 1〉, and the pivot index is 3. Then A[3] = 0, so
〈0, 0, 1, 2, 2, 1, 1〉 is a valid partitioning. For the same array, if the pivot index is 2, then A[2] = 2, so
the arrays 〈0, 1, 0, 1, 1, 2, 2〉 as well as 〈0, 0, 1, 1, 1, 2, 2〉 are valid partitionings.

(a) Before partitioning. (b) A three-way partitioning re-
sembling the Dutch national
flag.

(c) Another three-way partition-
ing: the Russian national flag.

Figure 2.1: Illustrating the Dutch national flag problem.

Write a program that takes an array A and an index i into A, and rearranges the elements such
that all elements less than A[i] (the “pivot”) appear first, followed by elements equal to the pivot,
followed by elements greater than the pivot.

Hint: Think about the partition step in quicksort.
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Solution: The problem is trivial to solve with O(n) additional space, where n is the length of A.
We form three lists, namely, elements less than the pivot, elements equal to the pivot, and elements
greater than the pivot. Consequently, we write these values into A. The time complexity is O(n).

We can avoid using O(n) additional space at the cost of increased time complexity as follows. In
the first stage, we iterate through A starting from index 0, then index 1, etc. In each iteration, we
seek an element smaller than the pivot—as soon as we find it, we move it to the subarray of smaller
elements via an exchange. This moves all the elements less than the pivot to the start of the array.
The second stage is similar to the first one, the difference being that we move elements greater than
the pivot to the end of the array. Code illustrating this approach is shown below.

public static enum Color { RED, WHITE, BLUE }

public static void dutchFlagPartition(int pivotIndex , List<Color> A) {

Color pivot = A.get(pivotIndex);

// First pass: group elements smaller than pivot.

for (int i = 0; i < A.size(); ++i) {

// Look for a smaller element.

for (int j = i + 1; j < A.size(); ++j) {

if (A.get(j).ordinal() < pivot.ordinal()) {

Collections.swap(A, i, j);

break;

}

}

}

// Second pass: group elements larger than pivot.

for (int i = A.size() - 1; i >= 0 && A.get(i).ordinal() >= pivot.ordinal();

--i) {

// Look for a larger element. Stop when we reach an element less

// than pivot, since first pass has moved them to the start of A.

for (int j = i - 1; j >= 0 && A.get(j).ordinal() >= pivot.ordinal();

--j) {

if (A.get(j).ordinal() > pivot.ordinal()) {

Collections.swap(A, i, j);

break;

}

}

}

}

The additional space complexity is now O(1), but the time complexity is O(n2), e.g., if i = n/2
and all elements before i are greater than A[i], and all elements after i are less than A[i]. Intuitively,
this approach has bad time complexity because in the first pass when searching for each additional
element smaller than the pivot we start from the beginning. However, there is no reason to start
from so far back—we can begin from the last location we advanced to. (Similar comments hold for
the second pass.)

To improve time complexity, we make a single pass and move all the elements less than the pivot
to the beginning. In the second pass we move the larger elements to the end. It is easy to perform
each pass in a single iteration, moving out-of-place elements as soon as they are discovered.

public static enum Color { RED, WHITE, BLUE }
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public static void dutchFlagPartition(int pivotIndex , List<Color> A) {

Color pivot = A.get(pivotIndex);

// First pass: group elements smaller than pivot.

int smaller = 0;

for (int i = 0; i < A.size(); ++i) {

if (A.get(i).ordinal() < pivot.ordinal()) {

Collections.swap(A, smaller++, i);

}

}

// Second pass: group elements larger than pivot.

int larger = A.size() - 1;

for (int i = A.size() - 1; i >= 0 && A.get(i).ordinal() >= pivot.ordinal();

--i) {

if (A.get(i).ordinal() > pivot.ordinal()) {

Collections.swap(A, larger--, i);

}

}

}

The time complexity is O(n) and the space complexity is O(1).
The algorithm we now present is similar to the one sketched above. The main difference is that

it performs classification into elements less than, equal to, and greater than the pivot in a single
pass. This reduces runtime, at the cost of a trickier implementation. We do this by maintaining four
subarrays: bottom (elements less than pivot), middle (elements equal to pivot), unclassified, and top
(elements greater than pivot). Initially, all elements are in unclassified. We iterate through elements
in unclassified, and move elements into one of bottom, middle, and top groups according to the relative
order between the incoming unclassified element and the pivot.

As a concrete example, suppose the array is currently A = 〈−3, 0,−1, 1, 1, ?, ?, ?, 4, 2〉, where the
pivot is 1 and ? denotes unclassified elements. There are three possibilities for the first unclassified
element, A[5].
• A[5] is less than the pivot, e.g., A[5] = −5. We exchange it with the first 1, i.e., the new array

is 〈−3, 0,−1,−5, 1, 1, ?, ?, 4, 2〉.
• A[5] is equal to the pivot, i.e., A[5] = 1. We do not need to move it, we just advance to the next

unclassified element, i.e., the array is 〈−3, 0,−1, 1, 1, 1, ?, ?, 4, 2〉.
• A[5] is greater than the pivot, e.g., A[5] = 3. We exchange it with the last unclassified element,

i.e., the new array is 〈−3, 0,−1, 1, 1, ?, ?, 3, 4, 2〉.
Note how the number of unclassified elements reduces by one in each case.

public static enum Color { RED, WHITE, BLUE }

public static void dutchFlagPartition(int pivotIndex , List<Color> A) {

Color pivot = A.get(pivotIndex);

/**

* Keep the following invariants during partitioning:

* bottom group: A.subList(0, smaller).

* middle group: A.subList(smaller, equal).

* unclassified group: A.subList(equal, larger).

* top group: A.subList(larger, A.size()).

*/

int smaller = 0, equal = 0, larger = A.size();

11



// Keep iterating as long as there is an unclassified element.

while (equal < larger) {

// A.get(equal) is the incoming unclassified element.

if (A.get(equal).ordinal() < pivot.ordinal()) {

Collections.swap(A, smaller++, equal++);

} else if (A.get(equal).ordinal() == pivot.ordinal()) {

++equal;

} else { // A.get(equal) > pivot.

Collections.swap(A, equal, --larger);

}

}

}

Each iteration decreases the size of unclassified by 1, and the time spent within each iteration isO(1),
implying the time complexity is O(n). The space complexity is clearly O(1).

Variant: Assuming that keys take one of three values, reorder the array so that all objects with the
same key appear together. The order of the subarrays is not important. For example, both Figures
2.1(b) and 2.1(c) on Page 9 are valid answers for Figure 2.1(a) on Page 9. Use O(1) additional space
and O(n) time.

Variant: Given an array A of n objects with keys that takes one of four values, reorder the array so
that all objects that have the same key appear together. Use O(1) additional space and O(n) time.

Variant: Given an array A of n objects with Boolean-valued keys, reorder the array so that objects
that have the key false appear first. Use O(1) additional space and O(n) time.

Variant: Given an array A of n objects with Boolean-valued keys, reorder the array so that objects
that have the key false appear first. The relative ordering of objects with key true should not change.
Use O(1) additional space and O(n) time.
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Chapter

3
Strings

String pattern matching is an important problem that occurs in
many areas of science and information processing. In comput-
ing, it occurs naturally as part of data processing, text editing,
term rewriting, lexical analysis, and information retrieval.

— “Algorithms For Finding Patterns in Strings,”
A. V. Aho, 1990

Strings are ubiquitous in programming today—scripting, web development, and bioinformatics all
make extensive use of strings.

A string can be viewed as a special kind of array, namely one made out of characters. We
treat strings separately from arrays because certain operations which are commonly applied to
strings—for example, comparison, joining, splitting, searching for substrings, replacing one string
by another, parsing, etc.—do not make sense for general arrays.

You should know how strings are represented in memory, and understand basic operations on
strings such as comparison, copying, joining, splitting, matching, etc. Advanced string processing
algorithms often use hash tables (Chapter 9) and dynamic programming (Page 66). In this chapter
we present problems on strings which can be solved using basic techniques.

Strings boot camp

A palindromic string is one which reads the same when it is reversed. The program below checks
whether a string is palindromic. Rather than creating a new string for the reverse of the input
string, it traverses the input string forwards and backwards, thereby saving space. Notice how it
uniformly handles even and odd length strings.

public static boolean isPalindromic(String s) {

for (int i = 0, j = s.length() - 1; i < j; ++i, --j) {

if (s.charAt(i) != s.charAt(j)) {

return false;

}

}

return true;

}

The time complexity is O(n) and the space complexity is O(1), where n is the length of the string.

Know your string libraries

When manipulating Java strings, you need to know both the String class as well as the
StringBuilder class. The latter is needed because Java strings are immutable, so to make string
construction efficient, it’s necessary to have a mutable string class.
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Similar to arrays, string problems often have simple brute-force solutions that use O(n) space
solution, but subtler solutions that use the string itself to reduce space complexity to O(1).

Understand the implications of a string type which is immutable, e.g., the need to allocate a
new string when concatenating immutable strings. Know alternatives to immutable strings,
e.g., an StringBuilder in Java.

Updating a mutable string from the front is slow, so see if it’s possible to write values from the
back.

Table 3.1: Top Tips for Strings

• The key methods on strings are charAt(1), compareTo(“foo”), concat(“bar”) (returns
a new string—does not update the invoking string), contains(“aba”), endsWith(“YZ”),
indexOf(“needle”), indexOf(“needle”, 12), indexOf(’A’),, indexOf(’B’,

offset),, lastIndexOf(“needle”), length(), replace(’a’, ’A’), replace(“a”

“ABC”), “foo::bar::abc”.split(“::”), startsWith(prefix), startsWith(“www”,

“http://”.length()), substring(1), substring(1,5), toCharArray(), toLowerCase(),
and trim().

– The substring() method is particularly important, and also easy to get wrong, since
it has two variants: one takes a start index, and returns a suffix (easily confused with
prefix) and the other takes a start and end index (the returned substring includes the
character at start but not the character at end).

• The key methods in StringBuilder are append(), charAt(), delete(), deleteCharAt(),
insert(), replace() and toString().

3.1 Interconvert strings and integers

A string is a sequence of characters. A string may encode an integer, e.g., “123” encodes 123. In
this problem, you are to implement methods that take a string representing an integer and return
the corresponding integer, and vice versa. Your code should handle negative integers. You cannot
use library functions like stoi in C++, parseInt in Java, and int in Python.

Implement string/integer inter-conversion functions.

Hint: Build the result one digit at a time.

Solution: Let’s consider the integer to string problem first. If the number to convert is a single
digit, i.e., it is between 0 and 9, the result is easy to compute: it is the string consisting of the single
character encoding that digit.

If the number has more than one digit, it is natural to perform the conversion digit-by-digit. The
key insight is that for any positive integer x, the least significant digit in the decimal representation
of x is x mod 10, and the remaining digits are x/10. This approach computes the digits in reverse
order, e.g., if we begin with 423, we get 3 and are left with 42 to convert. Then we get 2, and are left
with 4 to convert. Finally, we get 4 and there are no digits to convert. The natural algorithm would
be to prepend digits to the partial result. However, adding a digit to the beginning of a string is
expensive, since all remaining digit have to be moved. A more time efficient approach is to add
each computed digit to the end, and then reverse the computed sequence.
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If x is negative, we record that, negate x, and then add a ’-’ before reversing. If x is 0, our code
breaks out of the iteration without writing any digits, in which case we need to explicitly set a 0.

To convert from a string to an integer we recall the basic working of a positional number system.
A base-10 number d2d1d0 encodes the number 102

× d2 + 101
× d1 + d0. A brute-force algorithm then

is to begin with the rightmost digit, and iteratively add 10i
× di to a cumulative sum. The efficient

way to compute 10i+1 is to use the existing value 10i and multiply that by 10.
A more elegant solution is to begin from the leftmost digit and with each succeeding digit,

multiply the partial result by 10 and add that digit. For example, to convert “314” to an integer, we
initial the partial result r to 0. In the first iteration, r = 3, in the second iteration r = 3 × 10 + 1 = 31,
and in the third iteration r = 31 × 10 + 4 = 314, which is the final result.

Negative numbers are handled by recording the sign and negating the result.

public static String intToString(int x) {

boolean isNegative = false;

if (x < 0) {

isNegative = true;

}

StringBuilder s = new StringBuilder();

do {

s.append((char)(’0’ + Math.abs(x % 10)));

x /= 10;

} while (x != 0);

if (isNegative) {

s.append(’-’); // Adds the negative sign back.

}

s.reverse();

return s.toString();

}

public static int stringToInt(String s) {

int result = 0;

for (int i = s.charAt(0) == ’-’ ? 1 : 0; i < s.length(); ++i) {

final int digit = s.charAt(i) - ’0’;

result = result * 10 + digit;

}

return s.charAt(0) == ’-’ ? -result : result;

}

3.2 Base conversion

In the decimal number system, the position of a digit is used to signify the power of 10 that digit
is to be multiplied with. For example, “314” denotes the number 3 × 100 + 1 × 10 + 4 × 1. The
base b number system generalizes the decimal number system: the string “ak−1ak−2 . . . a1a0”, where
0 ≤ ai < b, denotes in base-b the integer a0 × b0 + a1 × b1 + a2 × b2 + · · · + ak−1 × bk−1.

Write a program that performs base conversion. The input is a string, an integer b1, and another
integer b2. The string represents an integer in base b1. The output should be the string representing
the integer in base b2. Assume 2 ≤ b1, b2 ≤ 16. Use “A” to represent 10, “B” for 11, . . . , and “F” for
15. (For example, if the string is “615”, b1 is 7 and b2 is 13, then the result should be “1A7”, since
6 × 72 + 1 × 7 + 5 = 1 × 132 + 10 × 13 + 7.)
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Hint: What base can you easily convert to and from?

Solution: A brute-force approach might be to convert the input to a unary representation, and then
group the 1s as multiples of b2, b2

2, b3
2, etc. For example, (102)3 = (1111111111)1. To convert to base 4,

there are two groups of 4 and with three 1s remaining, so the result is (23)4. This approach is hard
to implement, and has terrible time and space complexity.

The insight to a good algorithm is the fact that all languages have an integer type, which
supports arithmetical operations like multiply, add, divide, modulus, etc. These operations make
the conversion much easier. Specifically, we can convert a string in base b1 to integer type using
a sequence of multiply and adds. Then we convert that integer type to a string in base b2 using
a sequence of modulus and division operations. For example, for the string is “615”, b1 = 7 and
b2 = 13, then the integer value, expressed in decimal, is 306. The least significant digit of the result
is 306 mod 13 = 7, and we continue with 306/13 = 23. The next digit is 23 mod 13 = 10, which we
denote by ’A’. We continue with 23/13 = 1. Since 1 mod 13 = 1 and 1/13 = 0, the final digit is 1,
and the overall result is “1A7”. The design of the algorithm nicely illustrates the use of reduction.

Since the conversion algorithm is naturally expressed in terms of smaller similar subproblems,
it is natural to implement it using recursion.

public static String convertBase(String numAsString , int b1, int b2) {

boolean isNegative = numAsString.startsWith("-");

int numAsInt = 0;

for (int i = (isNegative ? 1 : 0); i < numAsString.length(); ++i) {

numAsInt *= b1;

numAsInt += Character.isDigit(numAsString.charAt(i))

? numAsString.charAt(i) - ’0’

: numAsString.charAt(i) - ’A’ + 10;

}

return (isNegative ? "-" : "")

+ (numAsInt == 0 ? "0" : constructFromBase(numAsInt, b2));

}

private static String constructFromBase(int numAsInt , int base) {

return numAsInt == 0

? ""

: constructFromBase(numAsInt / base, base)

+ (char)(numAsInt % base >= 10 ? ’A’ + numAsInt % base - 10

: ’0’ + numAsInt % base);

}

The time complexity is O(n(1 + logb2
b1)), where n is the length of s. The reasoning is as follows.

First, we perform n multiply-and-adds to get x from s. Then we perform logb2
x multiply and adds

to get the result. The value x is upper-bounded by bn
1 , and logb2

(bn
1) = n logb2

b1.
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Chapter

4
Linked Lists

The S-expressions are formed according to the following recursive rules.

1. The atomic symbols p1, p2, etc., are S-expressions.

2. A null expression ∧ is also admitted.

3. If e is an S-expression so is (e).

4. If e1 and e2 are S-expressions so is (e1, e2).

— “Recursive Functions Of Symbolic Expressions,”
J. McCarthy, 1959

A list implements an ordered collection of values, which may include repetitions. Sepcifically, a
singly linked list is a data structure that contains a sequence of nodes such that each node contains
an object and a reference to the next node in the list. The first node is referred to as the head and the
last node is referred to as the tail; the tail’s next field is null. The structure of a singly linked list is
given in Figure 4.1. There are many variants of linked lists, e.g., in a doubly linked list, each node has
a link to its predecessor; similarly, a sentinel node or a self-loop can be used instead of null to mark
the end of the list. The structure of a doubly linked list is given in Figure 4.2.

A list is similar to an array in that it contains objects in a linear order. The key differences are that
inserting and deleting elements in a list has time complexity O(1). On the other hand, obtaining the
kth element in a list is expensive, having O(n) time complexity. Lists are usually building blocks of
more complex data structures. However, as we will see in this chapter, they can be the subject of
tricky problems in their own right.

L 2

0x1354

3

0x1200

5

0x2200

3

0x1000

2

0x2110

Figure 4.1: Example of a singly linked list. The number in hex below a node indicates the memory address of that node.

L 2 3 5 3 2

Figure 4.2: Example of a doubly linked list.

For all problems in this chapter, unless otherwise stated, each node has two entries—a data field,
and a next field, which points to the next node in the list, with the next field of the last node being
null. Its prototype is as follows:

public class ListNode <T> {

public T data;

public ListNode <T> next;

}
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Linked lists boot camp

There are two types of list-related problems—those where you have to implement your own list,
and those where you have to exploit the standard list library. We will review both these aspects
here, starting with implementation, then moving on to list libraries.

Implementing a basic list API—search, insert, delete—for singly linked lists is an excellent way
to become comfortable with lists.
Search for a key:

public static ListNode <Integer> search(ListNode <Integer> L, int key) {

while (L != null && L.data != key) {

L = L.next;

}

// If key was not present in the list, L will have become null.

return L;

}

Insert a new node after a specified node:

// Insert newNode after node.

public static void insertAfter(ListNode <Integer> node,

ListNode <Integer> newNode) {

newNode.next = node.next;

node.next = newNode;

}

Delete a node:

// Delete the node immediately following aNode. Assumes aNode is not a tail.

public static void deleteList(ListNode<Integer> aNode) {

aNode.next = aNode.next.next;

}

Insert and delete are local operations and haveO(1) time complexity. Search requires traversing the
entire list, e.g., if the key is at the last node or is absent, so its time complexity is O(n), where n is
the number of nodes.

List problems often have a simple brute-force solution that usesO(n) space, but a subtler solution
that uses the existing list nodes to reduce space complexity to O(1).

Very often, a problem on lists is conceptually simple, and is more about cleanly coding what’s
specified, rather than designing an algorithm.

Consider using a dummy head (sometimes referred to as a sentinel) to avoid having to check
for empty lists. This simplifies code, and makes bugs less likely.

It’s easy to forget to update next (and previous for double linked list) for the head and tail.

Algorithms operating on singly linked lists often benefit from using two iterators, one ahead of
the other, or one advancing quicker than the other.

Table 4.1: Top Tips for Linked Lists
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Know your linked list libraries

We now review the standard linked list library, with the reminder that many interview problems
that are directly concerned with lists require you to write your own list class.

Ordered sequences, including dynamically resized arrays and doubly linked lists, implement
the List interface. The key methods for the List interface are add(’A’), add(2,3.14), addAll(C),
addAll(0,C), clear(), contains(2.71), get(12), indexOf(289), isEmpty(), iterator(),
listIterator(), remove(1), removeAll(C), retainAll(C), set(3,42), subList(1,5), and
toArray(). Be very comfortable with iterators—you should be able to code a class that imple-
ments the Iterator interface if asked to do so.

Here are some key things to keep in mind when operating on Java lists.
• The two most commonly used implementations of the List interface are ArrayList (imple-

mented as a dynamically resized array) and LinkedList (implemented as a doubly linked
list). Some operations are much slower on ArrayList, e.g., add(0,x) takes O(n) time on an
ArrayList, but O(1) time on a LinkedList. This is because of the intrinsic difference between
arrays and lists.

• Both add(e) and remove(idx) are optional—in particular, they are not supported by the object
returned by Arrays.asList(), as discussed on Page 8.

The Java Collections class consists exclusively of static methods that operate
on or return collections. Some useful methods are Collections.addAll(C,1,2,4),
Collections.binarySearch(list,42), Collections.fill(list,’f’), Collections.swap(C,0,1),
Collections.min(C),Collections.min(C,cmp), Collections.max(C),Collections.max(C,cmp),
Collections.reverse(list), Collections.rotate(list,12), Collections.sort(list), and
Collections.sort(list, cmp). These are, by-and-large, simple functions, but will save you time,
and result in cleaner code.

The Arrays utility class, described on on Page 8 has a static method Arrays.asList() which
can be very helpful in an interview.

By way of introduction, Arrays.asList() can be applied to scalar values, e.g.,
Arrays.asList(1,2,4) returns a list of length 3, consisting of 1, 2, and 4. It can also be applied to
an array—it will create an object that implements the List interface, in O(1) time.

Arrays.asList() can be very helpful in an interview environment, where you may not have
the time to code up a tuple class or a class that’s just a collection of getter/setter methods. Specifi-
cally, using Arrays.asList() you can efficiently create tuples, and you do not need to implement
equals(), hashCode(), and compareTo(): they will work out of the box. For example, it takes about
25 lines of code to implement a class implementing basic 2D-Cartesian coordinates, which you can
do away with using Arrays.asList(x1,y1).

Here are some more points about Arrays.asList().
• The object returned by Arrays.asList(array), is partially mutable: you can change

existing entries, but you cannot add or delete entries. For example, add(3.14)

throws UnsupportedOperationException, but Collections.sort(Arrays.asList(array)),
which potentially changes the order of the elements, is fine. This happens because
Arrays.asList(array) returns an adapter around the original array.

• If you call Arrays.asList() on an array of primitive type, e.g., Arrays.asList(new

int[]1,2,4), you will get a list with a single entry, which is likely not what you want.
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(That entry will be the integer array [1,2,4].) The box-type, i.e., Arrays.asList(new

Integer[]1,2,4), will yield the desired result.
• To preserve the original array, make a copy of it, e.g., with Arrays.copyOf(A, A.length).

4.1 Test for cyclicity

Although a linked list is supposed to be a sequence of nodes ending in null, it is possible to create
a cycle in a linked list by making the next field of an element reference to one of the earlier nodes.

Write a program that takes the head of a singly linked list and returns null if there does not exist a
cycle, and the node at the start of the cycle, if a cycle is present. (You do not know the length of the
list in advance.)

Hint: Consider using two iterators, one fast and one slow.

Solution: This problem has several solutions. If space is not an issue, the simplest approach is to
explore nodes via the next field starting from the head and storing visited nodes in a hash table—a
cycle exists if and only if we visit a node already in the hash table. If no cycle exists, the search ends
at the tail (often represented by having the next field set to null). This solution requires O(n) space,
where n is the number of nodes in the list.

A brute-force approach that does not use additional storage and does not modify the list is to
traverse the list in two loops—the outer loop traverses the nodes one-by-one, and the inner loop
starts from the head, and traverses as many nodes as the outer loop has gone through so far. If the
node being visited by the outer loop is visited twice, a loop has been detected. (If the outer loop
encounters the end of the list, no cycle exists.) This approach has O(n2) time complexity.

This idea can be made to work in linear time—use a slow iterator and a fast iterator to traverse
the list. In each iteration, advance the slow iterator by one and the fast iterator by two. The list has
a cycle if and only if the two iterators meet. The reasoning is as follows: if the fast iterator jumps
over the slow iterator, the slow iterator will equal the fast iterator in the next step.

Now, assuming that we have detected a cycle using the above method, we can find the start
of the cycle, by first calculating the cycle length C. Once we know there is a cycle, and we have a
node on it, it is trivial to compute the cycle length. To find the first node on the cycle, we use two
iterators, one of which is C ahead of the other. We advance them in tandem, and when they meet,
that node must be the first node on the cycle.

The code to do this traversal is quite simple:

public static ListNode <Integer> hasCycle(ListNode <Integer> head) {

ListNode <Integer> fast = head, slow = head;

while (fast != null && fast.next != null) {

slow = slow.next;

fast = fast.next.next;

if (slow == fast) {

// There is a cycle, so now let’s calculate the cycle length.

int cycleLen = 0;

do {

++cycleLen;

fast = fast.next;

} while (slow != fast);
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// Finds the start of the cycle.

ListNode <Integer> cycleLenAdvancedIter = head;

// cycleLenAdvancedIter pointer advances cycleLen first.

while (cycleLen-- > 0) {

cycleLenAdvancedIter = cycleLenAdvancedIter.next;

}

ListNode <Integer> iter = head;

// Both iterators advance in tandem.

while (iter != cycleLenAdvancedIter) {

iter = iter.next;

cycleLenAdvancedIter = cycleLenAdvancedIter.next;

}

return iter; // iter is the start of cycle.

}

}

return null; // no cycle.

}

Let F be the number of nodes to the start of the cycle, C the number of nodes on the cycle, and n the
total number of nodes. Then the time complexity is O(F) + O(C) = O(n)—O(F) for both pointers to
reach the cycle, and O(C) for them to overlap once the slower one enters the cycle.

Variant: The following program purports to compute the beginning of the cycle without determining
the length of the cycle; it has the benefit of being more succinct than the code listed above. Is the
program correct?

public static ListNode <Integer> hasCycle(ListNode <Integer> head) {

ListNode <Integer> fast = head, slow = head;

while (fast != null && fast.next != null && fast.next.next != null) {

slow = slow.next;

fast = fast.next.next;

if (slow == fast) { // There is a cycle.

// Tries to find the start of the cycle.

slow = head;

// Both pointers advance at the same time.

while (slow != fast) {

slow = slow.next;

fast = fast.next;

}

return slow; // slow is the start of cycle.

}

}

return null; // No cycle.

}
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Chapter

5
Stacks and Queues

Linear lists in which insertions, deletions, and accesses to val-
ues occur almost always at the first or the last node are very
frequently encountered, and we give them special names . . .

— “The Art of Computer Programming, Volume 1,”
D. E. Knuth, 1997

Stacks support last-in, first-out semantics for inserts and deletes, whereas queues are first-in,
first-out. Stacks and queues are usually building blocks in a solution to a complex problem. As we
will soon see, they can also make for stand-alone problems.

Stacks

A stack supports two basic operations—push and pop. Elements are added (pushed) and removed
(popped) in last-in, first-out order, as shown in Figure 5.1. If the stack is empty, pop typically
returns null or throws an exception.

When the stack is implemented using a linked list these operations have O(1) time complexity.
If it is implemented using an array, there is maximum number of entries it can have—push and pop
are still O(1). If the array is dynamically resized, the amortized time for both push and pop is O(1).
A stack can support additional operations such as peek, which returns the top of the stack without
popping it.
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(a) Initial configuration.

pop

2

1

(b) Popping (a).

push 3

2

1

3

(c) Pushing 3 on to (b).

Figure 5.1: Operations on a stack.

Stacks boot camp

The last-in, first-out semantics of a stack make it very useful for creating reverse iterators for
sequences which are stored in a way that would make it difficult or impossible to step back from
a given element. This a program uses a stack to print the entries of a singly-linked list in reverse
order.
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public static void printLinkedListInReverse(ListNode <Integer> head) {

Deque<Integer> nodes = new LinkedList <>();

while (head != null) {

nodes.addFirst(head.data);

head = head.next;

}

while (!nodes.isEmpty()) {

System.out.println(nodes.poll());

}

}

The time and space complexity are O(n), where n is the number of nodes in the list.

Learn to recognize when the stack LIFO property is applicable. For example, parsing typically
benefits from a stack.

Consider augmenting the basic stack or queue data structure to support additional operations,
such as finding the maximum element.

Table 5.1: Top Tips for Stacks

Know your stack libraries

The preferred way to represent stacks in Java is via the Deque interface. The LinkedList class is
a doubly linked list that implements this interface, and provides efficient (O(1) time) stack (and
queue) functionality.

The key stack-related methods in theDeque interface arepush(42), peek(), andpop(). TheDeque
methods addFirst(42), peekFirst(), and removeFirst() are identical to push(42), peek(), and
pop(). We use them in our solutions in place of push(42), peek(), and pop().
• push(e) pushes an element onto the stack. Not much can go wrong with a call to push: some

implementing classes may throw an IllegalStateException if the capacity limit is exceeded,
or a NullPointerException if the element being inserted is null. LinkedList has no capacity
limit and allows for null entries, though as we will see you should be very careful when
adding null.

• peek() will retrieve, but does not remove, the element at the top of the stack. If the stack is
empty, it returns null. Since null may be a valid entry, this leads to ambiguity. Therefore a
better test for an empty stack is isEmpty().

• pop() will remove and return the element at the top of the stack. It throws
NoSuchElementException if the deque is empty. To avoid the exception, first test with
isEmpty().

Other useful stack-related methods are descendingIterator() and iterator().

5.1 Implement a stack with max API

Design a stack that includes a max operation, in addition to push and pop. The max method should
return the maximum value stored in the stack.

Hint: Use additional storage to track the maximum value.

Solution: The simplest way to implement a max operation is to consider each element in the stack,
e.g., by iterating through the underlying array for an array-based stack. The time complexity is
O(n) and the space complexity is O(1), where n is the number of elements currently in the stack.
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The time complexity can be reduced to O(log n) using auxiliary data structures, specifically, a
heap or a BST, and a hash table. The space complexity increases to O(n) and the code is quite
complex.

Suppose we use a single auxiliary variable, M, to record the element that is maximum in the
stack. Updating M on pushes is easy: M = max(M, e), where e is the element being pushed.
However, updating M on pop is very time consuming. If M is the element being popped, we have
no way of knowing what the maximum remaining element is, and are forced to consider all the
remaining elements.

We can dramatically improve on the time complexity of popping by caching, in essence, trading
time for space. Specifically, for each entry in the stack, we cache the maximum stored at or below
that entry. Now when we pop, we evict the corresponding cached value.

private static class ElementWithCachedMax {

public Integer element;

public Integer max;

public ElementWithCachedMax(Integer element, Integer max) {

this.element = element;

this.max = max;

}

}

public static class Stack {

// Stores (element, cached maximum) pair.

private Deque<ElementWithCachedMax > elementWithCachedMax

= new LinkedList <>();

public boolean empty() { return elementWithCachedMax.isEmpty(); }

public Integer max() {

if (empty()) {

throw new IllegalStateException("max(): empty stack");

}

return elementWithCachedMax.peek().max;

}

public Integer pop() {

if (empty()) {

throw new IllegalStateException("pop(): empty stack");

}

return elementWithCachedMax.removeFirst().element;

}

public void push(Integer x) {

elementWithCachedMax.addFirst(

new ElementWithCachedMax(x, Math.max(x, empty() ? x : max())));

}

}

Each of the specified methods has time complexity O(1). The additional space complexity is O(n),
regardless of the stored keys.

We can improve on the best-case space needed by observing that if an element e being pushed
is smaller than the maximum element already in the stack, then e can never be the maximum, so
we do not need to record it. We cannot store the sequence of maximum values in a separate stack
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because of the possibility of duplicates. We resolve this by additionally recording the number of
occurrences of each maximum value. See Figure 5.2 on the next page for an example.

private static class MaxWithCount {

public Integer max;

public Integer count;

public MaxWithCount(Integer max, Integer count) {

this.max = max;

this.count = count;

}

}

public static class Stack {

private Deque<Integer> element = new LinkedList <>();

private Deque<MaxWithCount > cachedMaxWithCount = new LinkedList <>();

public boolean empty() { return element.isEmpty(); }

public Integer max() {

if (empty()) {

throw new IllegalStateException("max(): empty stack");

}

return cachedMaxWithCount.peekFirst().max;

}

public Integer pop() {

if (empty()) {

throw new IllegalStateException("pop(): empty stack");

}

Integer popElement = element.removeFirst();

if (popElement.equals(cachedMaxWithCount.peekFirst().max)) {

cachedMaxWithCount.peekFirst().count

= cachedMaxWithCount.peekFirst().count - 1;

if (cachedMaxWithCount.peekFirst().count.equals(0)) {

cachedMaxWithCount.removeFirst();

}

}

return popElement;

}

public void push(Integer x) {

element.addFirst(x);

if (!cachedMaxWithCount.isEmpty()) {

if (Integer.compare(x, cachedMaxWithCount.peekFirst().max) == 0) {

cachedMaxWithCount.peekFirst().count

= cachedMaxWithCount.peekFirst().count + 1;

} else if (Integer.compare(x, cachedMaxWithCount.peekFirst().max) > 0) {

cachedMaxWithCount.addFirst(new MaxWithCount(x, 1));

}

} else {

cachedMaxWithCount.addFirst(new MaxWithCount(x, 1));

}

}

}

The worst-case additional space complexity is O(n), which occurs when each key pushed is greater
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than all keys in the primary stack. However, when the number of distinct keys is small, or the
maximum changes infrequently, the additional space complexity is less, O(1) in the best-case. The
time complexity for each specified method is still O(1).
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Figure 5.2: The primary and auxiliary stacks for the following operations: push 2, push 2, push 1, push 4, push 5,
push 5, push 3, pop, pop, pop, pop, push 0, push 3. Both stacks are initially empty, and their progression is shown from
left-to-right, then top-to-bottom. The top of the auxiliary stack holds the maximum element in the stack, and the number
of times that element occurs in the stack. The auxiliary stack is denoted by aux.

Queues

A queue supports two basic operations—enqueue and dequeue. (If the queue is empty, dequeue
typically returns null or throws an exception.) Elements are added (enqueued) and removed
(dequeued) in first-in, first-out order. The most recently inserted element is referred to as the tail
or back element, and the item that was inserted least recently is referred to as the head or front
element.

A queue can be implemented using a linked list, in which case these operations have O(1) time
complexity. The queue API often includes other operations, e.g., a method that returns the item at
the head of the queue without removing it, a method that returns the item at the tail of the queue
without removing it, etc.

3 2 0

(a) Initial configuration.

2 0
dequeue

(b) Queue (a) after dequeue.

2 0 4 enqueue 4

(c) Queue (b) after enqueuing 4.

Figure 5.3: Examples of enqueuing and dequeuing.

A deque, also sometimes called a double-ended queue, is a doubly linked list in which all
insertions and deletions are from one of the two ends of the list, i.e., at the head or the tail. An
insertion to the front is commonly called a push, and an insertion to the back is commonly called
an inject. A deletion from the front is commonly called a pop, and a deletion from the back is
commonly called an eject. (Different languages and libraries may have different nomenclature.)
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Queues boot camp

In the following program, we implement the basic queue API—enqueue and dequeue—as well
as a max-method, which returns the maximum element stored in the queue. The basic idea is to
use composition: add a private field that references a library queue object, and forward existing
methods (enqueue and dequeue in this case) to that object.

public class QueueWithMaxIntro {

private Deque<Integer> data = new LinkedList <>();

public void enqueue(Integer x) { data.add(x); }

public Integer dequeue() { return data.removeFirst(); }

public Integer max() {

if (!data.isEmpty()) {

return Collections.max(data);

}

throw new IllegalStateException("cannot perform max() on empty queue");

}

}

The time complexity of enqueue and dequeue are the same as that of the library queue, namely,
O(1). The time complexity of finding the maximum is O(n), where n is the number of entries.

Learn to recognize when the queue FIFO property is applicable. For example, queues are ideal
when order needs to be preserved.

Table 5.2: Top Tips for Queues

Know your queue libraries

The preferred way to manipulate queues is via the Deque interface. The LinkedList class is a
doubly linked list that implements this interface, and provides efficient (O(1) time) queue (and
stack) functionality.

The key queue-related methods in the Deque interface are addLast(3.14), removeFirst(),
getFirst(), offerLast(3.14), pollFirst(), and peekFirst().
• addLast(3.14) enqueues an element. Some classes implementing Deque have capacity limits

and/or preclude null from being enqueued, but this is not the case for LinkedList.
• removeFirst() retrieves and removes the first element of this deque, throwing
NoSuchElementException if the deque is empty.

• getFirst() retrieves, but does not remove, the first element of this deque, throwing
NoSuchElementException if the deque is empty.

The methods offerLast(’a’), pollFirst(), and peekFirst() are very similar to addLast(’a’),
removeFirst(), and getFirst(), the exception being that they are less prone to throwing ex-
ceptions. For example, if the queue is at full capacity, offerLast(’a’) returns false, indicating
the enqueue was unsuccessful. Both pollFirst() and peekFirst() return null if the queue is
empty—this can be ambiguous if null is a valid entry.

Other useful queue-related methods are descendingIterator() and iterator().
Deque is a subinterface of Queue. In particular, the Queue methods add(123), offer(123),

remove(), poll(), element(), and peek() are identical to addLast(123), offerLast(),

27



removeFirst(), pollFirst(), getFirst(), and peekFirst(), respectively. We prefer the latter
methods as we find their naming more in keeping with the Deque concept.

5.2 Compute binary tree nodes in order of increasing depth

Binary trees are formally defined in Chapter 6. In particular, each node in a binary tree has a depth,
which is its distance from the root.

Given a binary tree, return an array consisting of the keys at the same level. Keys should appear
in the order of the corresponding nodes’ depths, breaking ties from left to right. For example, you
should return 〈〈314〉, 〈6, 6〉, 〈271, 561, 2, 271〉, 〈28, 0, 3, 1, 28〉, 〈17, 401, 257〉, 〈641〉〉 for the binary tree
in Figure 6.1 on Page 30.

Hint: First think about solving this problem with a pair of queues.

Solution: A brute force approach might be to write the nodes into an array while simultaneously
computing their depth. We can use preorder traversal to compute this array—by traversing a node’s
left child first we can ensure that nodes at the same depth are sorted from left to right. Now we
can sort this array using a stable sorting algorithm with node depth being the sort key. The time
complexity is dominated by the time taken to sort, i.e., O(n log n), and the space complexity is O(n),
which is the space to store the node depths.

Intuitively, since nodes are already presented in a somewhat ordered fashion in the tree, it
should be possible to avoid a full-blow sort, thereby reducing time complexity. Furthermore, by
processing nodes in order of depth, we do not need to label every node with its depth.

In the following, we use a queue of nodes to store nodes at depth i and a queue of nodes at
depth i + 1. After all nodes at depth i are processed, we are done with that queue, and can start
processing the queue with nodes at depth i + 1, putting the depth i + 2 nodes in a new queue.

public static List<List<Integer>> binaryTreeDepthOrder(

BinaryTreeNode <Integer> tree) {

Queue<BinaryTreeNode <Integer>> currDepthNodes = new LinkedList <>();

currDepthNodes.add(tree);

List<List<Integer>> result = new ArrayList <>();

while (!currDepthNodes.isEmpty()) {

Queue<BinaryTreeNode <Integer>> nextDepthNodes = new LinkedList <>();

List<Integer> thisLevel = new ArrayList <>();

while (!currDepthNodes.isEmpty()) {

BinaryTreeNode <Integer> curr = currDepthNodes.poll();

if (curr != null) {

thisLevel.add(curr.data);

// Defer the null checks to the null test above.

nextDepthNodes.add(curr.left);

nextDepthNodes.add(curr.right);

}

}

if (!thisLevel.isEmpty()) {

result.add(thisLevel);

}

currDepthNodes = nextDepthNodes;

}

return result;
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}

Since each node is enqueued and dequeued exactly once, the time complexity is O(n). The space
complexity is O(m), where m is the maximum number of nodes at any single depth.

Variant: Write a program which takes as input a binary tree and returns the keys in top
down, alternating left-to-right and right-to-left order, starting from left-to-right. For exam-
ple, if the input is the tree in Figure 6.1 on the next page, your program should return
〈〈314〉, 〈6, 6〉, 〈271, 561, 2, 271〉, 〈28, 1, 3, 0, 28〉, 〈17, 401, 257〉, 〈641〉〉.

Variant: Write a program which takes as input a binary tree and returns the keys in a bottom up,
left-to-right order. For example, if the input is the tree in Figure 6.1 on the following page, your
program should return 〈〈641〉, 〈17, 401, 257〉, 〈28, 0, 3, 1, 28〉, 〈271, 561, 2, 271〉, 〈6, 6〉, 〈314〉〉.

Variant: Write a program which takes as input a binary tree with integer keys, and returns the
average of the keys at each level. For example, if the input is the tree in Figure 6.1 on the next page,
your program should return 〈314, 6, 276.25, 12, 225, 641〉.
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Chapter

6
Binary Trees

The method of solution involves the development of a theory of finite automata
operating on infinite trees.

— “Decidability of Second Order Theories and Automata on Trees,”
M. O. Rabin, 1969

Formally, a binary tree is either empty, or a root node r together with a left binary tree and a right
binary tree. The subtrees themselves are binary trees. The left binary tree is sometimes referred to
as the left subtree of the root, and the right binary tree is referred to as the right subtree of the root.

Binary trees most commonly occur in the context of binary search trees, wherein keys are stored
in a sorted fashion (Chapter 11 on Page 57). However, there are many other applications of binary
trees: at a high level, binary tree are appropriate when dealing with hierarchies.

Figure 6.1 gives a graphical representation of a binary tree. Node A is the root. Nodes B and I
are the left and right children of A.
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Figure 6.1: Example of a binary tree. The node depths range from 0 to 5. Node M has the highest depth (5) of any
node in the tree, implying the height of the tree is 5.

Often the node stores additional data. Its prototype is listed as follows:

public class BinaryTreeNode <T> {

public T data;

public BinaryTreeNode <T> left, right;

}

Each node, except the root, is itself the root of a left subtree or a right subtree. If l is the root of
p’s left subtree, we will say l is the left child of p, and p is the parent of l; the notion of right child is
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similar. If a node is a left or a right child of p, we say it is a child of p. Note that with the exception
of the root, every node has a unique parent. Usually, but not universally, the node object definition
includes a parent field (which is null for the root). Observe that for any node there exists a unique
sequence of nodes from the root to that node with each node in the sequence being a child of the
previous node. This sequence is sometimes referred to as the search path from the root to the node.

The parent-child relationship defines an ancestor-descendant relationship on nodes in a binary
tree. Specifically, a node is an ancestor of d if it lies on the search path from the root to d. If a node is
an ancestor of d, we say d is a descendant of that node. Our convention is that a node is an ancestor
and descendant of itself. A node that has no descendants except for itself is called a leaf.

The depth of a node n is the number of nodes on the search path from the root to n, not including
n itself. The height of a binary tree is the maximum depth of any node in that tree. A level of a tree
is all nodes at the same depth. See Figure 6.1 on the facing page for an example of the depth and
height concepts.

As concrete examples of these concepts, consider the binary tree in Figure 6.1 on the preceding
page. Node I is the parent of J and O. Node G is a descendant of B. The search path to L is
〈A, I, J,K,L〉. The depth of N is 4. Node M is the node of maximum depth, and hence the height of
the tree is 5. The height of the subtree rooted at B is 3. The height of the subtree rooted at H is 0.
Nodes D,E,H,M,N, and P are the leaves of the tree.

A full binary tree is a binary tree in which every node other than the leaves has two children.
A perfect binary tree is a full binary tree in which all leaves are at the same depth, and in which
every parent has two children. A complete binary tree is a binary tree in which every level, except
possibly the last, is completely filled, and all nodes are as far left as possible. (This terminology is
not universal, e.g., some authors use complete binary tree where we write perfect binary tree.) It is
straightforward to prove using induction that the number of nonleaf nodes in a full binary tree is
one less than the number of leaves. A perfect binary tree of height h contains exactly 2h+1

− 1 nodes,
of which 2h are leaves. A complete binary tree on n nodes has height blog nc. A left-skewed tree is
a tree in which no node has a right child; a right-skewed tree is a tree in which no node has a left
child. In either case, we refer to the binary tree as being skewed.

A key computation on a binary tree is traversing all the nodes in the tree. (Traversing is also
sometimes called walking.) Here are some ways in which this visit can be done.
• Traverse the left subtree, visit the root, then traverse the right subtree (an inorder traversal).

An inorder traversal of the binary tree in Figure 6.1 on the facing page visits the nodes in the
following order: 〈D,C,E,B,F,H,G,A, J,L,M,K,N, I,O,P〉.

• Visit the root, traverse the left subtree, then traverse the right subtree (a preorder traversal). A
preorder traversal of the binary tree in Figure 6.1 on the preceding page visits the nodes in
the following order: 〈A,B,C,D,E,F,G,H, I, J,K,L,M,N,O,P〉.

• Traverse the left subtree, traverse the right subtree, and then visit the root (a postorder traversal).
A postorder traversal of the binary tree in Figure 6.1 on the facing page visits the nodes in the
following order: 〈D,E,C,H,G,F,B,M,L,N,K, J,P,O, I,A〉.

Let T be a binary tree of n nodes, with height h. Implemented recursively, these traversals have
O(n) time complexity and O(h) additional space complexity. (The space complexity is dictated by
the maximum depth of the function call stack.) If each node has a parent field, the traversals can be
done with O(1) additional space complexity.
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The term tree is overloaded, which can lead to confusion; see Page 78 for an overview of the
common variants.

Binary trees boot camp

A good way to get up to speed with binary trees is to implement the three basic traversals—inorder,
preorder, and postorder.

public static void treeTraversal(BinaryTreeNode <Integer> root) {

if (root != null) {

// Preorder: Processes the root before the traversals of left and right

// children.

System.out.println("Preorder: " + root.data);

treeTraversal(root.left);

// Inorder: Processes the root after the traversal of left child and

// before the traversal of right child.

System.out.println("Inorder: " + root.data);

treeTraversal(root.right);

// Postorder: Processes the root after the traversals of left and right

// children.

System.out.println("Postorder: " + root.data);

}

}

The time complexity of each approach isO(n), where n is the number of nodes in the tree. Although
no memory is explicitly allocated, the function call stack reaches a maximum depth of h, the height
of the tree. Therefore, the space complexity is O(h). The minimum value for h is log n (complete
binary tree) and the maximum value for h is n (skewed tree).

Recursive algorithms are well-suited to problems on trees. Remember to include space implic-
itly allocated on the function call stack when doing space complexity analysis. Please read the
introduction to Chapter 12 if you need a refresher on recursion.

Some tree problems have simple brute-force solutions that use O(n) space solution, but subtler
solutions that uses the existing tree nodes to reduce space complexity to O(1).

Consider left- and right-skewed trees when doing complexity analysis. Note that O(h) com-
plexity, where h is the tree height, translates into O(log n) complexity for balanced trees, but
O(n) complexity for skewed trees.

If each node has a parent field, use it to make your code simpler, and to reduce time and space
complexity.

It’s easy to make the mistake of treating a node that has a single child as a leaf.

Table 6.1: Top Tips for Binary Trees

6.1 Test if a binary tree is height-balanced

A binary tree is said to be height-balanced if for each node in the tree, the difference in the height of
its left and right subtrees is at most one. A perfect binary tree is height-balanced, as is a complete
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Figure 6.2: A height-balanced binary tree of height 4.

binary tree. A height-balanced binary tree does not have to be perfect or complete—see Figure 6.2
for an example.

Write a program that takes as input the root of a binary tree and checks whether the tree is height-
balanced.

Hint: Think of a classic binary tree algorithm.

Solution: Here is a brute-force algorithm. Compute the height for the tree rooted at each node x
recursively. The basic computation is to compute the height for each node starting from the leaves,
and proceeding upwards. For each node, we check if the difference in heights of the left and right
children is greater than one. We can store the heights in a hash table, or in a new field in the nodes.
This entails O(n) storage and O(n) time, where n is the number of nodes of the tree.

We can solve this problem using less storage by observing that we do not need to store the
heights of all nodes at the same time. Once we are done with a subtree, all we need is whether it is
height-balanced, and if so, what its height is—we do not need any information about descendants
of the subtree’s root.

private static class BalanceStatusWithHeight {

public boolean balanced;

public int height;

public BalanceStatusWithHeight(boolean balanced , int height) {

this.balanced = balanced;

this.height = height;

}

}

public static boolean isBalanced(BinaryTreeNode <Integer> tree) {

return checkBalanced(tree).balanced;

}

private static BalanceStatusWithHeight checkBalanced(

BinaryTreeNode <Integer> tree) {

if (tree == null) {

return new BalanceStatusWithHeight(true, -1); // Base case.

}
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BalanceStatusWithHeight leftResult = checkBalanced(tree.left);

if (!leftResult.balanced) {

return leftResult; // Left subtree is not balanced.

}

BalanceStatusWithHeight rightResult = checkBalanced(tree.right);

if (!rightResult.balanced) {

return rightResult; // Right subtree is not balanced.

}

boolean isBalanced = Math.abs(leftResult.height - rightResult.height) <= 1;

int height = Math.max(leftResult.height, rightResult.height) + 1;

return new BalanceStatusWithHeight(isBalanced , height);

}

The program implements a postorder traversal with some calls possibly being eliminated because
of early termination. Specifically, if any left subtree is not height-balanced we do not need to visit
the corresponding right subtree. The function call stack corresponds to a sequence of calls from the
root through the unique path to the current node, and the stack height is therefore bounded by the
height of the tree, leading to an O(h) space bound. The time complexity is the same as that for a
postorder traversal, namely O(n).

Variant: Write a program that returns the size of the largest subtree that is complete.

Variant: Define a node in a binary tree to be k-balanced if the difference in the number of nodes in
its left and right subtrees is no more than k. Design an algorithm that takes as input a binary tree
and positive integer k, and returns a node in the binary tree such that the node is not k-balanced,
but all of its descendants are k-balanced. For example, when applied to the binary tree in Figure 6.1
on Page 30, if k = 3, your algorithm should return Node J.
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Chapter

7
Heaps

Using F-heaps we are able to obtain improved running times
for several network optimization algorithms.

— “Fibonacci heaps and their uses,”
M. L. Fredman and R. E. Tarjan, 1987

A heap is a specialized binary tree. Specifically, it is a complete binary tree as defined on Page 31.
The keys must satisfy the heap property—the key at each node is at least as great as the keys stored
at its children. See Figure 7.1(a) for an example of a max-heap. A max-heap can be implemented as
an array; the children of the node at index i are at indices 2i + 1 and 2i + 2. The array representation
for the max-heap in Figure 7.1(a) is 〈561, 314, 401, 28, 156, 359, 271, 11, 3〉.

A max-heap supports O(log n) insertions, O(1) time lookup for the max element, and O(log n)
deletion of the max element. The extract-max operation is defined to delete and return the maximum
element. See Figure 7.1(b) for an example of deletion of the max element. Searching for arbitrary
keys has O(n) time complexity.

A heap is sometimes referred to as a priority queue because it behaves like a queue, with one
difference: each element has a “priority” associated with it, and deletion removes the element with
the highest priority.

The min-heap is a completely symmetric version of the data structure and supports O(1) time
lookups for the minimum element.

561

401

271359

314

15628

311

(a) A max-heap. Note that the root hold the maximum key,
561.

401

359

2713

314

15628

11

(b) After the deletion of max of the heap in (a). Deletion is per-
formed by replacing the root’s key with the key at the last leaf
and then recovering the heap property by repeatedly exchang-
ing keys with children.

Figure 7.1: A max-heap and deletion on that max-heap.
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Heaps boot camp

Suppose you were asked to write a program which takes a sequence of strings presented in “stream-
ing” fashion: you cannot back up to read an earlier value. Your program must compute the k longest
strings in the sequence. All that is required is the k longest strings—it is not required to order these
strings.

As we process the input, we want to track the k longest strings seen so far. Out of these k strings,
the string to be evicted when a longer string is to be added is the shortest one. A min-heap (not
a max-heap!) is the right data structure for this application, since it supports efficient find-min,
remove-min, and insert. In the program below we use a heap with a custom compare function,
wherein strings are ordered by length.

public static List<String> topK(int k, Iterator <String> iter) {

PriorityQueue <String> minHeap

= new PriorityQueue <>(k, new Comparator <String >() {

public int compare(String s1, String s2) {

return Integer.compare(s1.length(), s2.length());

}

});

while (iter.hasNext()) {

minHeap.add(iter.next());

if (minHeap.size() > k) {

// Remove the shortest string. Note that the comparison function above

// will order the strings by length.

minHeap.poll();

}

}

return new ArrayList <>(minHeap);

}

Each string is processed in O(log k) time, which is the time to add and to remove the minimum
element from the heap. Therefore, if there are n strings in the input, the time complexity to process
all of them is O(n log k).

We could improve best-case time complexity by first comparing the new string’s length with
the length of the string at the top of the heap (getting this string takes O(1) time) and skipping the
insert if the new string is too short to be in the set.

Use a heap when all you care about is the largest or smallest elements, and you do not need to
support fast lookup, delete, or search operations for arbitrary elements.

A heap is a good choice when you need to compute the k largest or k smallest elements in a
collection. For the former, use a min-heap, for the latter, use a max-heap.

Table 7.1: Top Tips for Heaps

Know your heap libraries

The implementation of a heap in the Java Collections framework is referred to as a priority queue;
the class is PriorityQueue. The key methods are add(“Gauss”), peek(), and poll(), and are
straightforward, the latter two returning null when the heap is empty. It is possible to specify a
custom comparator in the heap constructor, as illustrated on on this page.
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7.1 Merge sorted files

This problem is motivated by the following scenario. You are given 500 files, each containing stock
trade information for an S&P 500 company. Each trade is encoded by a line in the following format:
1232111,AAPL,30,456.12.

The first number is the time of the trade expressed as the number of milliseconds since the start
of the day’s trading. Lines within each file are sorted in increasing order of time. The remaining
values are the stock symbol, number of shares, and price. You are to create a single file containing
all the trades from the 500 files, sorted in order of increasing trade times. The individual files are
of the order of 5–100 megabytes; the combined file will be of the order of five gigabytes. In the
abstract, we are trying to solve the following problem.

Write a program that takes as input a set of sorted sequences and computes the union of these
sequences as a sorted sequence. For example, if the input is 〈3, 5, 7〉, 〈0, 6〉, and 〈0, 6, 28〉, then the
output is 〈0, 0, 3, 5, 6, 6, 7, 28〉.

Hint: Which part of each sequence is significant as the algorithm executes?

Solution: A brute-force approach is to concatenate these sequences into a single array and then sort
it. The time complexity is O(n log n), assuming there are n elements in total.

The brute-force approach does not use the fact that the individual sequences are sorted. We
can take advantage of this fact by restricting our attention to the first remaining element in each
sequence. Specifically, we repeatedly pick the smallest element amongst the first element of each of
the remaining part of each of the sequences.

A min-heap is ideal for maintaining a collection of elements when we need to add arbitrary
values and extract the smallest element.

For ease of exposition, we show how to merge sorted arrays, rather than files. As a concrete
example, suppose there are three sorted arrays to be merged: 〈3, 5, 7〉, 〈0, 6〉, and 〈0, 6, 28〉. For
simplicity, we show the min-heap as containing entries from these three arrays. In practice, we
need additional information for each entry, namely the array it is from, and its index in that array.
(In the file case we do not need to explicitly maintain an index for next unprocessed element in each
sequence—the file I/O library tracks the first unread entry in the file.)

The min-heap is initialized to the first entry of each array, i.e., it is {3, 0, 0}. We extract the smallest
entry, 0, and add it to the output which is 〈0〉. Then we add 6 to the min-heap which is {3, 0, 6} now.
(We chose the 0 entry corresponding to the third array arbitrarily, it would be a perfectly acceptable
to choose from the second array.) Next, extract 0, and add it to the output which is 〈0, 0〉; then add
6 to the min-heap which is {3, 6, 6}. Next, extract 3, and add it to the output which is 〈0, 0, 3〉; then
add 5 to the min-heap which is {5, 6, 6}. Next, extract 5, and add it to the output which is 〈0, 0, 3, 5〉;
then add 7 to the min-heap which is {7, 6, 6}. Next, extract 6, and add it to the output which is
〈0, 0, 3, 5, 6〉; assuming 6 is selected from the second array, which has no remaining elements, the
min-heap is {7, 6}. Next, extract 6, and add it to the output which is 〈0, 0, 3, 5, 6, 6〉; then add 28 to
the min-heap which is {7, 28}. Next, extract 7, and add it to the output which is 〈0, 0, 3, 5, 6, 6, 7〉; the
min-heap is {28}. Next, extract 28, and add it to the output which is 〈0, 0, 3, 5, 6, 6, 7, 28〉; now, all
elements are processed and the output stores the sorted elements.

private static class ArrayEntry {

public Integer value;

public Integer arrayId;

public ArrayEntry(Integer value, Integer arrayId) {
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this.value = value;

this.arrayId = arrayId;

}

}

public static List<Integer> mergeSortedArrays(

List<List<Integer>> sortedArrays) {

List<Iterator <Integer>> iters = new ArrayList <>(sortedArrays.size());

for (List<Integer> array : sortedArrays) {

iters.add(array.iterator());

}

PriorityQueue <ArrayEntry > minHeap = new PriorityQueue <>(

((int)sortedArrays.size()), new Comparator <ArrayEntry >() {

@Override

public int compare(ArrayEntry o1, ArrayEntry o2) {

return Integer.compare(o1.value, o2.value);

}

});

for (int i = 0; i < iters.size(); ++i) {

if (iters.get(i).hasNext()) {

minHeap.add(new ArrayEntry(iters.get(i).next(), i));

}

}

List<Integer> result = new ArrayList <>();

while (!minHeap.isEmpty()) {

ArrayEntry headEntry = minHeap.poll();

result.add(headEntry.value);

if (iters.get(headEntry.arrayId).hasNext()) {

minHeap.add(new ArrayEntry(iters.get(headEntry.arrayId).next(),

headEntry.arrayId));

}

}

return result;

}

Let k be the number of input sequences. Then there are no more than k elements in the min-heap.
Both extract-min and insert take O(log k) time. Hence, we can do the merge in O(n log k) time. The
space complexity is O(k) beyond the space needed to write the final result. In particular, if the data
comes from files and is written to a file, instead of arrays, we would need only O(k) additional
storage.

Alternatively, we could recursively merge the k files, two at a time using the merge step from
merge sort. We would go from k to k/2 then k/4, etc. files. There would be log k stages, and each
has time complexity O(n), so the time complexity is the same as that of the heap-based approach,
i.e., O(n log k). The space complexity of any reasonable implementation of merge sort would end
up being O(n), which is considerably worse than the heap based approach when k� n.
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Chapter

8
Searching

— “The Anatomy of A Large-Scale Hypertextual Web Search Engine,”
S. M. Brin and L. Page, 1998

Search algorithms can be classified in a number of ways. Is the underlying collection static or
dynamic, i.e., inserts and deletes are interleaved with searching? Is it worth spending the com-
putational cost to preprocess the data so as to speed up subsequent queries? Are there statistical
properties of the data that can be exploited? Should we operate directly on the data or transform
it?

In this chapter, our focus is on static data stored in sorted order in an array. Data structures
appropriate for dynamic updates are the subject of Chapters 7, 9, and 11.

The first collection of problems in this chapter are related to binary search. The second collection
pertains to general search.
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Binary search

Given an arbitrary collection of n keys, the only way to determine if a search key is present is by
examining each element. This has O(n) time complexity. Fundamentally, binary search is a natural
elimination-based strategy for searching a sorted array. The idea is to eliminate half the keys from
consideration by keeping the keys in sorted order. If the search key is not equal to the middle
element of the array, one of the two sets of keys to the left and to the right of the middle element
can be eliminated from further consideration.

Questions based on binary search are ideal from the interviewers perspective: it is a basic
technique that every reasonable candidate is supposed to know and it can be implemented in a
few lines of code. On the other hand, binary search is much trickier to implement correctly than it
appears—you should implement it as well as write corner case tests to ensure you understand it
properly.

Many published implementations are incorrect in subtle and not-so-subtle ways—a study re-
ported that it is correctly implemented in only five out of twenty textbooks. Jon Bentley, in his book
“Programming Pearls” reported that he assigned binary search in a course for professional program-
mers and found that 90% failed to code it correctly despite having ample time. (Bentley’s students
would have been gratified to know that his own published implementation of binary search, in
a column titled “Writing Correct Programs”, contained a bug that remained undetected for over
twenty years.)

Binary search can be written in many ways—recursive, iterative, different idioms for condi-
tionals, etc. Here is an iterative implementation adapted from Bentley’s book, which includes his
bug.

public static int bsearch(int t, List<Integer> A) {

int L = 0, U = A.size() - 1;

while (L <= U) {

int M = (L + U) / 2;

if (A.get(M) < t) {

L = M + 1;

} else if (A.get(M) == t) {

return M;

} else {

U = M - 1;

}

}

return -1;

}

The error is in the assignment M = (L + U) / 2 in Line 4, which can potentially lead to overflow.
This overflow can be avoided by using M = L + (U - L) / 2.

The time complexity of binary search is given by T(n) = T(n/2) + c, where c is a constant. This
solves to T(n) = O(log n), which is far superior to the O(n) approach needed when the keys are
unsorted. A disadvantage of binary search is that it requires a sorted array and sorting an array
takes O(n log n) time. However, if there are many searches to perform, the time taken to sort is not
an issue.

Many variants of searching a sorted array require a little more thinking and create opportunities
for missing corner cases.
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Searching boot camp

When objects are comparable, they can be sorted and searched for using library search functions.
Typically, the language knows how to compare built-in types, e.g., integers, strings, library classes
for date, URLs, SQL timestamps, etc. However, user-defined types used in sorted collections
must explicitly implement comparison, and ensure this comparison has basic properties such as
transitivity. (If the comparison is implemented incorrectly, you may find a lookup into a sorted
collection fails, even when the item is present.)

Suppose we are given as input an array of students, sorted by descending GPA, with ties broken
on name. In the program below, we show how to use the library binary search routine to perform
fast searches in this array. In particular, we pass binary search a custom comparator which compares
students on GPA (higher GPA comes first), with ties broken on name.

public static class Student {

public String name;

public double gradePointAverage;

Student(String name, double gradePointAverage) {

this.name = name;

this.gradePointAverage = gradePointAverage;

}

}

private static final Comparator <Student> compGPA = new Comparator <Student >() {

@Override

public int compare(Student a, Student b) {

if (a.gradePointAverage != b.gradePointAverage) {

return Double.compare(a.gradePointAverage , b.gradePointAverage);

}

return a.name.compareTo(b.name);

}

};

public static boolean searchStudent(List<Student> students, Student target,

Comparator <Student> compGPA) {

return Collections.binarySearch(students , target, compGPA) >= 0;

}

Assuming the i-th element in the sequence can be accessed in O(1) time, the time complexity of the
program is O(log n).

Binary search is an effective search tool. It is applicable to more than just searching in sorted
arrays, e.g., it can be used to search an interval of real numbers or integers.

If your solution uses sorting, and the computation performed after sorting is faster than sorting,
e.g., O(n) or O(log n), look for solutions that do not perform a complete sort.

Consider time/space tradeoffs, such as making multiple passes through the data.

Table 8.1: Top Tips for Searching
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Know your searching libraries

Searching is a very broad concept, and it is present in many data structures. For example
contains(e) is present in ArrayList, LinkedList, HashSet, and TreeSet, albeit with very dif-
ferent time complexities. Here we focus on binary search.
• To search an array, use Arrays.binarySearch(A,“Euler”). The time complexity is O(log n),

where n is length of the array.
• To search a sorted List-type object, use Collections.binarySearch(list,42). These return

the index of the searched key if it is present, and a negative value if it is not present.
• The time complexity depends on the nature of the List implementation. For ArrayList (and

more generally, any List implementation in which positional access is constant-time), it is
O(log n), where n is the number of elements in the list. For LinkedList it is O(n).

• When there are multiple occurrences of the search key, neither Arrays nor Collections offer
any guarantees as to which one will be found by binary search.

• If the search key is not present, both methods return (−(insertion point) − 1), where
insertion point is defined as the point at which the key would be inserted into the array,
i.e., the index of the first element greater than the key, or the number of elements if all
elements are less than the specified value.

8.1 Search a sorted array for first occurrence of k

Binary search commonly asks for the index of any element of a sorted array that is equal to a
specified element. The following problem has a slight twist on this.

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

-14 -10 2 108 108 243 285 285 285 401

Figure 8.1: A sorted array with repeated elements.

Write a method that takes a sorted array and a key and returns the index of the first occurrence of
that key in the array. For example, when applied to the array in Figure 8.1 your algorithm should
return 3 if the given key is 108; if it is 285, your algorithm should return 6.

Hint: What happens when every entry equals k? Don’t stop when you first see k.

Solution: A naive approach is to use binary search to find the index of any element equal to the key,
k. (If k is not present, we simply return −1.) After finding such an element, we traverse backwards
from it to find the first occurrence of that element. The binary search takes time O(log n), where n is
the number of entries in the array. Traversing backwards takesO(n) time in the worst-case—consider
the case where entries are equal to k.

The fundamental idea of binary search is to maintain a set of candidate solutions. For the current
problem, if we see the element at index i equals k, although we do not know whether i is the first
element equal to k, we do know that no subsequent elements can be the first one. Therefore we
remove all elements with index i + 1 or more from the candidates.

Let’s apply the above logic to the given example, with k = 108. We start with all indices as
candidates, i.e., with [0, 9]. The midpoint index, 4 contains k. Therefore we can now update the

42



candidate set to [0, 3], and record 4 as an occurrence of k. The next midpoint is 1, and this index
contains −10. We update the candidate set to [2, 3]. The value at the midpoint 2 is 2, so we update
the candidate set to [3, 3]. Since the value at this midpoint is 108, we update the first seen occurrence
of k to 3. Now the interval is [3, 2], which is empty, terminating the search—the result is 3.

public static int searchFirstOfK(List<Integer> A, int k) {

int left = 0, right = A.size() - 1, result = -1;

// A.subList(left, right + 1) is the candidate set.

while (left <= right) {

int mid = left + ((right - left) / 2);

if (A.get(mid) > k) {

right = mid - 1;

} else if (A.get(mid) == k) {

result = mid;

// Nothing to the right of mid can be the first occurrence of k.

right = mid - 1;

} else { // A.get(mid) < k

left = mid + 1;

}

}

return result;

}

The complexity bound is stillO(log n)—this is because each iteration reduces the size of the candidate
set by half.

Variant: Design an efficient algorithm that takes a sorted array and a key, and finds the index of
the first occurrence of an element greater than that key. For example, when applied to the array
in Figure 8.1 on the facing page your algorithm should return 9 if the key is 285; if it is −13, your
algorithm should return 1.

Variant: Let A be an unsorted array of n integers, with A[0] ≥ A[1] and A[n − 2] ≤ A[n − 1]. Call an
index i a local minimum if A[i] is less than or equal to its neighbors. How would you efficiently find
a local minimum, if one exists?

Variant: Write a program which takes a sorted array A of integers, and an integer k, and returns
the interval enclosing k, i.e., the pair of integers L and U such that L is the first occurrence of k in
A and U is the last occurrence of k in A. If k does not appear in A, return [−1,−1]. For example if
A = 〈1, 2, 2, 4, 4, 4, 7, 11, 11, 13〉 and k = 11, you should return [7, 8].

Variant: Write a program which tests if p is a prefix of a string in an array of sorted strings.
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Chapter

9
Hash Tables

The new methods are intended to reduce the amount of space required to
contain the hash-coded information from that associated with conventional
methods. The reduction in space is accomplished by exploiting the possibil-
ity that a small fraction of errors of commission may be tolerable in some
applications.

— “Space/time trade-offs in hash coding with allowable errors,”
B. H. Bloom, 1970

A hash table is a data structure used to store keys, optionally, with corresponding values. Inserts,
deletes and lookups run in O(1) time on average.

The underlying idea is is to store keys in an array. A key is stored in the array locations (“slots”)
based on its “hash code”. The hash code is an integer computed from the key by a hash function.
If the hash function is chosen well, the objects are distributed uniformly across the array locations.

If two keys map to the same location, a “collision” is said to occur. The standard mechanism to
deal with collisions is to maintain a linked list of objects at each array location. If the hash function
does a good job of spreading objects across the underlying array and take O(1) time to compute, on
average, lookups, insertions, and deletions haveO(1 + n/m) time complexity, where n is the number
of objects and m is the length of the array. If the “load” n/m grows large, rehashing can be applied
to the hash table. A new array with a larger number of locations is allocated, and the objects are
moved to the new array. Rehashing is expensive (O(n + m) time) but if it is done infrequently (for
example, whenever the number of entries doubles), its amortized cost is low.

A hash table is qualitatively different from a sorted array—keys do not have to appear in order,
and randomization (specifically, the hash function) plays a central role. Compared to binary search
trees (discussed in Chapter 11), inserting and deleting in a hash table is more efficient (assuming
rehashing is infrequent). One disadvantage of hash tables is the need for a good hash function but
this is rarely an issue in practice. Similarly, rehashing is not a problem outside of realtime systems
and even for such systems, a separate thread can do the rehashing.

A hash function has one hard requirement—equal keys should have equal hash codes. This may
seem obvious, but is easy to get wrong, e.g., by writing a hash function that is based on address
rather than contents, or by including profiling data.

A softer requirement is that the hash function should “spread” keys, i.e., the hash codes for a
subset of objects should be uniformly distributed across the underlying array. In addition, a hash
function should be efficient to compute.

A common mistake with hash tables is that a key that’s present in a hash table will be updated.
The consequence is that a lookup for that key will now fail, even though it’s still in the hash table.
If you have to update a key, first remove it, then update it, and finally, add it back—this ensures it’s
moved the correct array location. As a rule, you should avoid using mutable objects as keys.
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Now we illustrate the steps for designing a hash function suitable for strings. First, the hash
function should examine all the characters in the string. It should give a large range of values, and
should not let one character dominate (e.g., if we simply cast characters to integers and multiplied
them, a single 0 would result in a hash code of 0). We would also like a rolling hash function, one in
which if a character is deleted from the front of the string, and another added to the end, the new
hash code can be computed in O(1) time. The following function has these properties:

public static int stringHash(String s, int modulus) {

int kMult = 997;

int val = 0;

for (int i = 0; i < s.length(); i++) {

char c = s.charAt(i);

val = (val * kMult + c) % modulus;

}

return val;

}

A hash table is a good data structure to represent a dictionary, i.e., a set of strings. In some
applications, a trie, which is a tree data structure that is used to store a dynamic set of strings, has
computational advantages. Unlike a BST, nodes in the tree do not store a key. Instead, the node’s
position in the tree defines the key which it is associated with.

Hash tables boot camp

We introduce hash tables with two examples—one is an application that benefits from the algorith-
mic advantages of hash tables, and the other illustrates the design of a class that can be used in a
hash table.

An application of hash tables

Anagrams are popular word play puzzles, whereby rearranging letters of one set of words, you
get another set of words. For example, “eleven plus two” is an anagram for “twelve plus one”.
Crossword puzzle enthusiasts and Scrabble players benefit from the ability to view all possible
anagrams of a given set of letters.

Suppose you were asked to write a program that takes as input a set of words and returns groups
of anagrams for those words. Each group must contain at least two words.

For example, if the input is “debitcard”, “elvis”, “silent”, “badcredit”, “lives”, “freedom”,
“listen”, “levis”, “money” then there are three groups of anagrams: (1.) “debitcard”, “badcredit”;
(2.) “elvis”, “lives”, “levis”; (3.) “silent”, “listen”. (Note that “money” does not appear in any group,
since it has no anagrams in the set.)

Let’s begin by considering the problem of testing whether one word is an anagram of another.
Since anagrams do not depend on the ordering of characters in the strings, we can perform the
test by sorting the characters in the string. Two words are anagrams if and only if they result
in equal strings after sorting. For example, sort(“logarithmic”) and sort(“algorithmic”) are both
“acghiilmort”, so “logarithmic” and “algorithmic” are anagrams.

We can form the described grouping of strings by iterating through all strings, and comparing
each string with all other remaining strings. If two strings are anagrams, we do not consider the
second string again. This leads to an O(n2m log m) algorithm, where n is the number of strings and
m is the maximum string length.
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Looking more carefully at the above computation, note that the key idea is to map strings to
a representative. Given any string, its sorted version can be used as a unique identifier for the
anagram group it belongs to. What we want is a map from a sorted string to the anagrams it
corresponds to. Anytime you need to store a set of strings, a hash table is an excellent choice. Our
final algorithm proceeds by adding sort(s) for each string s in the dictionary to a hash table. The
sorted strings are keys, and the values are arrays of the corresponding strings from the original
input.

public static List<List<String>> findAnagrams(List<String> dictionary) {

Map<String, List<String>> sortedStringToAnagrams = new HashMap <>();

for (String s : dictionary) {

// Sorts the string, uses it as a key, and then appends

// the original string as another value in the hash table.

char[] sortedCharArray = s.toCharArray();

Arrays.sort(sortedCharArray);

String sortedStr = new String(sortedCharArray);

if (!sortedStringToAnagrams.containsKey(sortedStr)) {

sortedStringToAnagrams.put(sortedStr , new ArrayList <String >());

}

sortedStringToAnagrams.get(sortedStr).add(s);

}

List<List<String>> anagramGroups = new ArrayList <>();

for (Map.Entry<String, List<String>> p :

sortedStringToAnagrams.entrySet()) {

if (p.getValue().size() >= 2) { // Found anagrams.

anagramGroups.add(p.getValue());

}

}

return anagramGroups;

}

The computation consists of n calls to sort and n insertions into the hash table. Sorting all the
keys has time complexity O(nm log m). The insertions add a time complexity of O(nm), yielding
O(nm log m) time complexity in total.

Design of a hashable class

Consider a class that represents contacts. For simplicity, assume each contact is a string. Suppose
it is a hard requirement that the individual contacts are to be stored in a list and it’s possible that
the list contains duplicates. Two contacts should be equal if they contain the same set of strings,
regardless of the ordering of the strings within the underlying list. Multiplicity is not important,
i.e., three repetitions of the same contact is the same as a single instance of that contact. In order to
be able to store contacts in a hash table, we first need to explicitly define equality, which we can do
by forming sets from the lists and comparing the sets.

In our context, this implies that the hash function should depend on the strings present, but not
their ordering; it should also consider only one copy if a string appears in duplicate form. We do
this by forming a set from the list, and calling the hash function for the set. The library hash function
for sets is order-independent, and a set automatically suppress duplicates, so this hash function
meets our requirements. It should be pointed out that the hash function and equals methods below
are very inefficient. In practice, it would be advisable to cache the underlying set and the hash code,
remembering to void these values on updates.
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public static List<ContactList > mergeContactLists(

List<ContactList > contacts) {

return new ArrayList <>(new HashSet(contacts));

}

public static class ContactList {

public List<String> names;

ContactList(List<String> names) { this.names = names; }

@Override

public boolean equals(Object obj) {

if (obj == null || !(obj instanceof ContactList)) {

return false;

}

return this == obj

? true

: new HashSet(names).equals(new HashSet(((ContactList)obj).names));

}

@Override

public int hashCode() {

return new HashSet(names).hashCode();

}

}

The time complexity of computing the hash is O(n), where n is the number of strings in the
contact list. Hash codes are often cached for performance, with the caveat that the cache must be
cleared if object fields that are referenced by the hash function are updated.

Hash tables have the best theoretical and real-world performance for lookup, insert and delete.
Each of these operations has O(1) time complexity. The O(1) time complexity for insertion is for
the average case—a single insert can take O(n) if the hash table has to be resized.

Consider using a hash code as a signature to enhance performance, e.g., to filter out candidates.

Consider using a precomputed lookup table instead of boilerplate if-then code for mappings,
e.g., from character to value, or character to character.

When defining your own type that will be put in a hash table, be sure you understand the
relationship between logical equality and the fields the hash function must inspect. Specifi-
cally, anytime equality is implemented, it is imperative that the correct hash function is also
implemented, otherwise when objects are placed in hash tables, logically equivalent objects may
appear in different buckets, leading to lookups returning false, even when the searched item is
present.

Sometimes you’ll need a multimap, i.e., a map that contains multiple values for a single key, or
a bi-directional map. If the language’s standard libraries do not provide the functionality you
need, learn how to implement a multimap using lists as values, or find a third party library
that has a multimap.

Table 9.1: Top Tips for Hash Tables
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Know your hash table libraries

There are two hash table-based data structures commonly used in Java—HashSet and HashMap.
The difference between the two is that the latter stores key-value pairs, whereas the former simply
stores keys. Both have the property that they do not allow for duplicate keys, unlike, for example,
LinkedList and PriorityQueue. Technically, HashSet implements the Set interface, and HashMap

implements the Map interface.
The most important methods for HashSet are methods defined in Set—add(144),

remove(“Cantor”), contains(24), iterator(), isEmpty(), and size(). Both add(144) and
remove(“Cantor”) return a boolean indicating if the added/removed element was already present.
It’s important to remember that null is a valid entry.
• The order in which keys are traversed by the iterator returned by iterator() is unspecified; it

may even change with time. The classLinkedHashSet subclassesHashSet—the only difference
is that iterator() returns keys in the order in which they were inserted into the set. This
order is not affected if an element is re-inserted into the set, i.e., if s.add(x) is called when
s.contains(x) is true.

• HashSet implements retainAll(C), which can be used to perform set intersection—this can be
used to reduce coding burden substantially in some cases. A related method is removeAll(C).

The most important methods for HashMap are methods defined in Map—put(’z’, 26),
get(“Hardy”), remove(’z’), and containsKey(“Hardy”).
• There are several methods that are relevant to iteration—entrySet(), keySet(), and
values(). (Note that these methods do not follow a parallel naming scheme.) The generic
static inner class Map.Entry<K,V> is used to iterate over key-value pairs. Iteration order is not
fixed (though iteration over the entry set, the key set, and the value set does match up).

• To iterate in fixed order, use a LinkedHashMap. A LinkedHashMap is somewhat more complex
than a LinkedHashSet—for example, it can be specified that the iteration should proceed in
insertion order, or in access order (in which case a call to get(42)will move the corresponding
element to the front of the ordering). A LinkedHashMap can also specify capacity constraints,
and enable an LRU eviction policy.

The Objects class provides a number of static utility methods that can greatly reduce the
burden of writing equals(obj) and hashCode(). Example methods include Objects.equals(x,y),
Objects.deepEquals(A,B), and Objects.hash(42, “Douglas Adams”, 3.14, new Date()).

9.1 Is an anonymous letter constructible?

Write a program which takes text for an anonymous letter and text for a magazine and determines
if it is possible to write the anonymous letter using the magazine. The anonymous letter can be
written using the magazine if for each character in the anonymous letter, the number of times it
appears in the anonymous letter is no more than the number of times it appears in the magazine.

Hint: Count the number of distinct characters appearing in the letter.

Solution: A brute force approach is to count for each character in the character set the number of
times it appears in the letter and in the magazine. If any character occurs more often in the letter
than the magazine we return false, otherwise we return true. This approach is potentially slow
because it iterates over all characters, including those that do not occur in the letter or magazine.
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It also makes multiple passes over both the letter and the magazine—as many passes as there are
characters in the character set.

A better approach is to make a single pass over the letter, storing the character counts for the
letter in a single hash table—keys are characters, and values are the number of times that character
appears. Next, we make a pass over the magazine. When processing a character c, if c appears in
the hash table, we reduce its count by 1; we remove it from the hash when its count goes to zero. If
the hash becomes empty, we return true. If we reach the end of the letter and the hash is nonempty,
we return false—each of the characters remaining in the hash occurs more times in the letter than
the magazine.

public static boolean isLetterConstructibleFromMagazine(String letterText ,

String magazineText) {

Map<Character , Integer> charFrequencyForLetter = new HashMap <>();

// Compute the frequencies for all chars in letterText.

for (int i = 0; i < letterText.length(); i++) {

char c = letterText.charAt(i);

if (!charFrequencyForLetter.containsKey(c)) {

charFrequencyForLetter.put(c, 1);

} else {

charFrequencyForLetter.put(c, charFrequencyForLetter.get(c) + 1);

}

}

// Check if the characters in magazineText can cover characters in

// letterText.

for (char c : magazineText.toCharArray()) {

if (charFrequencyForLetter.containsKey(c)) {

charFrequencyForLetter.put(c, charFrequencyForLetter.get(c) - 1);

if (charFrequencyForLetter.get(c) == 0) {

charFrequencyForLetter.remove(c);

// All characters for letterText are matched.

if (charFrequencyForLetter.isEmpty()) {

break;

}

}

}

}

// Empty charFrequencyForLetter means every char in letterText can be

// covered by a character in magazineText.

return charFrequencyForLetter.isEmpty();

}

In the worst-case, the letter is not constructible or the last character of the magazine is essentially
required. Therefore, the time complexity is O(m + n) where m and n are the number of characters in
the letter and magazine, respectively. The space complexity is the size of the hash table constructed
in the pass over the letter, i.e., O(L), where L is the number of distinct characters appearing in the
letter.

If the characters are coded in ASCII, we could do away with the hash table and use a 256 entry
integer array A, with A[i] being set to the number of times the character i appears in the letter.
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Chapter

10
Sorting

PROBLEM 14 (Meshing). Two monotone sequences S, T, of lengths n, m, respectively, are stored
in two systems of n(p + 1), m(p + 1) consecutive memory locations, respectively: s, s + 1, . . . , s +

n(p + 1) − 1 and t, t + 1, . . . , t + m(p + 1) − 1. . . . It is desired to find a monotone permutation R
of the sum [S,T], and place it at the locations r, r + 1, . . . , r + (n + m)(p + 1) − 1.

— “Planning And Coding Of Problems For An Electronic Computing Instrument,”
H. H. Goldstine and J. von Neumann, 1948

Sorting—rearranging a collection of items into increasing or decreasing order—is a common prob-
lem in computing. Sorting is used to preprocess the collection to make searching faster (as we saw
with binary search through an array), as well as identify items that are similar (e.g., students are
sorted on test scores).

Naive sorting algorithms run in O(n2) time. A number of sorting algorithms run in O(n log n)
time—heapsort, merge sort, and quicksort are examples. Each has its advantages and disadvan-
tages: for example, heapsort is in-place but not stable; merge sort is stable but not in-place; quicksort
runs O(n2) time in worst-case. (An in-place sort is one which uses O(1) space; a stable sort is one
where entries which are equal appear in their original order.)

A well-implemented quicksort is usually the best choice for sorting. We briefly outline alterna-
tives that are better in specific circumstances.

For short arrays, e.g., 10 or fewer elements, insertion sort is easier to code and faster than
asymptotically superior sorting algorithms. If every element is known to be at most k places from
its final location, a min-heap can be used to get an O(n log k) algorithm. If there are a small number
of distinct keys, e.g., integers in the range [0..255], counting sort, which records for each element,
the number of elements less than it, works well. This count can be kept in an array (if the largest
number is comparable in value to the size of the set being sorted) or a BST, where the keys are the
numbers and the values are their frequencies. If there are many duplicate keys we can add the keys
to a BST, with linked lists for elements which have the same key; the sorted result can be derived
from an in-order traversal of the BST.

Most sorting algorithms are not stable. Merge sort, carefully implemented, can be made stable.
Another solution is to add the index as an integer rank to the keys to break ties.

Most sorting routines are based on a compare function. However, it is also possible to use
numerical attributes directly, e.g., in radix sort.

The heap data structure is discussed in detail in Chapter 7. Briefly, a max-heap (min-heap) stores
keys drawn from an ordered set. It supportsO(log n) inserts andO(1) time lookup for the maximum
(minimum) element; the maximum (minimum) key can be deleted in O(log n) time. Heaps can be
helpful in sorting problems, as illustrated by Problem 7.1 on Page 37.
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Sorting boot camp

It’s important to know how to use effectively the sort functionality provided by your language’s
library. Let’s say we are given a student class that implements a compare method that compares
students by name. Then by default, the array sort library routine will sort by name. To sort an array
of students by GPA, we have to explicitly speicify the compare function to the sort routine.

public static class Student implements Comparable <Student> {

public String name;

public double gradePointAverage;

public int compareTo(Student that) { return name.compareTo(that.name); }

Student(String name, double gradePointAverage) {

this.name = name;

this.gradePointAverage = gradePointAverage;

}

}

public static void sortByName(List<Student> students) {

Collections.sort(students);

}

public static void sortByGPA(List<Student> students) {

Collections.sort(

students , Collections.reverseOrder(new Comparator <Student >() {

@Override

public int compare(Student a, Student b) {

return Double.compare(a.gradePointAverage , b.gradePointAverage);

}

}));

}

The time complexity of any reasonable library sort is O(n log n) for an array with n entries. Most
library sorting functions are based on quicksort, which has O(1) space complexity.

Know your sorting libraries

To sort an array, use Arrays.sort(A), and to sort a list use Collections.sort(list).

• The time complexity of Arrays.sort(A) is O(n log n), where n is length of the array A. The
space complexity is as high as n/2 object references for randomly ordered input arrays. For
nearly sorted inputs, both time and space complexity are much better: approximately n
comparisons, and constant space.

• Arrays.sort(A) operates on arrays of objects that implement the Comparable interface.
Collections.sort(C) does the same on lists.

• Both Arrays.sort(A, cmp) and Collections.sort(C, customCmp) have the provision of
sorting according to an explicit comparator object, as shown on the current page.

• Collections.sort(L) internally proceeds by forming an array A, calling Arrays.sort(A) on
that array, and then writing the result back into the list L. This implies that the time complexity
of Collections.sort(L) is the same as that of Arrays.sort(A). Because of the copy, the space
complexity is always O(n). In particular, Collections.sort(L) applied to a LinkedList has
O(n log n) time complexity.
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Sorting problems come in two flavors: (1.) use sorting to make subsequent steps in an algo-
rithm simpler, and (2.) design a custom sorting routine. For the former, it’s fine to use a library
sort function, possibly with a custom comparator. For the latter, use a data structure like a BST,
heap, or array indexed by values.

Certain problems become easier to understand, as well as solve, when the input is sorted. The
most natural reason to sort is if the inputs have a natural ordering, and sorting can be used as
a preprocessing step to speed up searching.

For specialized input, e.g., a very small range of values, or a small number of values, it’s
possible to sort in O(n) time rather than O(n log n) time.

It’s often the case that sorting can be implemented in less space than required by a brute-force
approach.

Sometimes it is not obvious what to sort on, e.g., should a collection of intervals be sorted on
starting points or endpoints? (Problem 10.2 on Page 54)

Table 10.1: Top Tips for Sorting

10.1 Compute the intersection of two sorted arrays

A natural implementation for a search engine is to retrieve documents that match the set of words in
a query by maintaining an inverted index. Each page is assigned an integer identifier, its document-
ID. An inverted index is a mapping that takes a word w and returns a sorted array of page-ids which
contain w—the sort order could be, for example, the page rank in descending order. When a query
contains multiple words, the search engine finds the sorted array for each word and then computes
the intersection of these arrays—these are the pages containing all the words in the query. The most
computationally intensive step of doing this is finding the intersection of the sorted arrays.

Write a program which takes as input two sorted arrays, and returns a new array containing
elements that are present in both of the input arrays. The input arrays may have duplicate entries,
but the returned array should be free of duplicates. For example, the input is 〈2, 3, 3, 5, 5, 6, 7, 7, 8, 12〉
and 〈5, 5, 6, 8, 8, 9, 10, 10〉, your output should be 〈5, 6, 8〉.

Hint: Solve the problem if the input array lengths differ by orders of magnitude. What if they are approximately

equal?

Solution: The brute-force algorithm is a “loop join”, i.e., traversing through all the elements of one
array and comparing them to the elements of the other array. Let m and n be the lengths of the two
input arrays.

public static List<Integer> intersectTwoSortedArrays(List<Integer> A,

List<Integer> B) {

List<Integer> intersectionAB = new ArrayList <>();

for (int i = 0; i < A.size(); ++i) {

if ((i == 0 || A.get(i) != A.get(i - 1)) && B.contains(A.get(i))) {

intersectionAB.add(A.get(i));

}

}

return intersectionAB;

}
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The brute-force algorithm has O(mn) time complexity.
Since both the arrays are sorted, we can make some optimizations. First, we can iterate through

the first array and use binary search in array to test if the element is present in the second array.

public static List<Integer> intersectTwoSortedArrays(List<Integer> A,

List<Integer> B) {

List<Integer> intersectionAB = new ArrayList <>();

for (int i = 0; i < A.size(); ++i) {

if ((i == 0 || A.get(i) != A.get(i - 1))

&& Collections.binarySearch(B, A.get(i)) >= 0) {

intersectionAB.add(A.get(i));

}

}

return intersectionAB;

}

The time complexity is O(m log n), where m is the length of the array being iterated over. We can
further improve our run time by choosing the shorter array for the outer loop since if n is much
smaller than m, then n log(m) is much smaller than m log(n).

This is the best solution if one set is much smaller than the other. However, it is not the best when
the array lengths are similar because we are not exploiting the fact that both arrays are sorted. We
can achieve linear runtime by simultaneously advancing through the two input arrays in increasing
order. At each iteration, if the array elements differ, the smaller one can be eliminated. If they are
equal, we add that value to the intersection and advance both. (We handle duplicates by comparing
the current element with the previous one.) For example, if the arrays are A = 〈2, 3, 3, 5, 7, 11〉 and
B = 〈3, 3, 7, 15, 31〉, then we know by inspecting the first element of each that 2 cannot belong to the
intersection, so we advance to the second element of A. Now we have a common element, 3, which
we add to the result, and then we advance in both arrays. Now we are at 3 in both arrays, but we
know 3 has already been added to the result since the previous element in A is also 3. We advance
in both again without adding to the intersection. Comparing 5 to 7, we can eliminate 5 and advance
to the fourth element in A, which is 7, and equal to the element that B’s iterator holds, so it is added
to the result. We then eliminate 11, and since no elements remain in A, we return 〈3, 7〉.

public static List<Integer> intersectTwoSortedArrays(List<Integer> A,

List<Integer> B) {

List<Integer> intersectionAB = new ArrayList <>();

int i = 0, j = 0;

while (i < A.size() && j < B.size()) {

if (A.get(i) == B.get(j) && (i == 0 || A.get(i) != A.get(i - 1))) {

intersectionAB.add(A.get(i));

++i;

++j;

} else if (A.get(i) < B.get(j)) {

++i;

} else { // A.get(i) > B.get(j).

++j;

}

}

return intersectionAB;

}
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Since we spend O(1) time per input array element, the time complexity for the entire algorithm is
O(m + n).

10.2 Render a calendar

Consider the problem of designing an online calendaring application. One component of the design
is to render the calendar, i.e., display it visually.

Suppose each day consists of a number of events, where an event is specified as a start time and
a finish time. Individual events for a day are to be rendered as nonoverlapping rectangular regions
whose sides are parallel to the X- and Y-axes. Let the X-axis correspond to time. If an event starts
at time b and ends at time e, the upper and lower sides of its corresponding rectangle must be at b
and e, respectively. Figure 10.1 represents a set of events.

Suppose the Y-coordinates for each day’s events must lie between 0 and L (a pre-specified
constant), and each event’s rectangle must have the same “height” (distance between the sides
parallel to the X-axis). Your task is to compute the maximum height an event rectangle can have.
In essence, this is equivalent to the following problem.

E1 E2 E3 E4

E5 E6 E7

E8 E9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 10.1: A set of nine events. The earliest starting event begins at time 1; the latest ending event ends at time 17.
The maximum number of concurrent events is 3, e.g., {E1,E5,E8} as well as others.

Write a program that takes a set of events, and determines the maximum number of events that
take place concurrently.

Hint: Focus on endpoints.

Solution: The number of events scheduled for a given time changes only at times that are start or
end times of an event. This leads the following brute-force algorithm. For each endpoint, compute
the number of events that contain it. The maximum number of concurrent events is the maximum
of this quantity over all endpoints. If there are n intervals, the total number of endpoints is 2n.
Computing the number of events containing an endpoint takesO(n) time, since checking whether an
interval contains a point takesO(1) time. Therefore, the overall time complexity isO(2n×n) = O(n2).

The inefficiency in the brute-force algorithm lies in the fact that it does not take advantage of
locality, i.e., as we move from one endpoint to another. Intuitively, we can improve the run time by
sorting the set of all the endpoints in ascending order. (If two endpoints have equal times, and one
is a start time and the other is an end time, the one corresponding to a start time comes first. If both
are start or finish times, we break ties arbitrarily.)

Now as we proceed through endpoints we can incrementally track the number of events taking
place at that endpoint using a counter. For each endpoint that is the start of an interval, we increment
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the counter by 1, and for each endpoint that is the end of an interval, we decrement the counter by
1. The maximum value attained by the counter is maximum number of overlapping intervals.

For the example in Figure 10.1 on the preceding page, the first seven endpoints are 1(start),
2(start), 4(start), 5(end), 5(end), 6(start), 7(end). The counter values are updated to 1, 2, 3, 2, 1, 2, 1.

public static class Event {

public int start, finish;

public Event(int start, int finish) {

this.start = start;

this.finish = finish;

}

}

private static class Endpoint implements Comparable <Endpoint> {

public int time;

public boolean isStart;

public int compareTo(Endpoint e) {

if (time != e.time) {

return Integer.compare(time, e.time);

}

// If times are equal, an endpoint that starts an interval comes first.

return isStart && !e.isStart ? -1 : !isStart && e.isStart ? 1 : 0;

}

Endpoint(int t, boolean is) {

time = t;

isStart = is;

}

}

public static int findMaxSimultaneousEvents(List<Event> A) {

// Builds an array of all endpoints.

List<Endpoint > E = new ArrayList <>();

for (Event event : A) {

E.add(new Endpoint(event.start, true));

E.add(new Endpoint(event.finish, false));

}

// Sorts the endpoint array according to the time, breaking ties

// by putting start times before end times.

Collections.sort(E);

// Track the number of simultaneous events, and record the maximum

// number of simultaneous events.

int maxNumSimultaneousEvents = 0, numSimultaneousEvents = 0;

for (Endpoint endpoint : E) {

if (endpoint.isStart) {

++numSimultaneousEvents;

maxNumSimultaneousEvents

= Math.max(numSimultaneousEvents , maxNumSimultaneousEvents);

} else {

--numSimultaneousEvents;

}
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}

return maxNumSimultaneousEvents;

}

Sorting the endpoint array takes O(n log n) time; iterating through the sorted array takes O(n) time,
yielding an O(n log n) time complexity. The space complexity is O(n), which is the size of the
endpoint array.

Variant: Users 1, 2, . . . ,n share an Internet connection. User i uses bi bandwidth from time si to fi,
inclusive. What is the peak bandwidth usage?
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Chapter

11
Binary Search Trees

The number of trees which can be formed with n + 1
given knots α, β, γ, . . . = (n + 1)n−1.

— “A Theorem on Trees,”
A. Cayley, 1889

BSTs are a workhorse of data structures and can be used to solve almost every data structures
problem reasonably efficiently. They offer the ability to efficiently search for a key as well as find
the min and max elements, look for the successor or predecessor of a search key (which itself need
not be present in the BST), and enumerate the keys in a range in sorted order.

BSTs are similar to arrays in that the stored values (the “keys”) are stored in a sorted order.
However, unlike with a sorted array, keys can be added to and deleted from a BST efficiently.
Specifically, a BST is a binary tree as defined in Chapter 6 in which the nodes store keys that are
comparable, e.g., integers or strings. The keys stored at nodes have to respect the BST property—the
key stored at a node is greater than or equal to the keys stored at the nodes of its left subtree and
less than or equal to the keys stored in the nodes of its right subtree. Figure 11.1 on the following
page shows a BST whose keys are the first 16 prime numbers.

Key lookup, insertion, and deletion take time proportional to the height of the tree, which can
in worst-case be O(n), if insertions and deletions are naively implemented. However, there are
implementations of insert and delete which guarantee that the tree has height O(log n). These
require storing and updating additional data at the tree nodes. Red-black trees are an example of
height-balanced BSTs and are widely used in data structure libraries.

A common mistake with BSTs is that an object that’s present in a BST is to updated. The
consequence is that a lookup for that object returns false, even though it’s still in the BST. As a rule,
avoid putting mutable objects in a BST. Otherwise, when a mutable object that’s in a BST is to be
updated, always first remove it from the tree, then update it, then add it back.

The BST prototype is as follows:

public static class BSTNode<T> {

public T data;

public BSTNode<T> left, right;

}

Binary search trees boot camp

Searching is the single most fundamental application of BSTs. Unlike a hash table, a BST offers the
ability to find the min and max elements, and find the next largest/next smallest element. These
operations, along with lookup, delete and find, take time O(log n) for library implementations of
BSTs. Both BSTs and hash tables use O(n) space—in practice, a BST uses slightly more space.
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Figure 11.1: An example of a BST.

The following program demonstrates how to check if a given value is present in a BST. It is a
nice illustration of the power of recursion when operating on BSTs.

public static BSTNode<Integer> searchBST(BSTNode<Integer> tree, int key) {

return tree == null || tree.data == key

? tree

: key < tree.data ? searchBST(tree.left, key)

: searchBST(tree.right, key);

}

Since the program descends tree with in each step, and spends O(1) time per level, the time
complexity is O(h), where h is the height of the tree.

With a BST you can iterate through elements in sorted order in timeO(n) (regardless of whether
it is balanced).

Some problems need a combination of a BST and a hashtable. For example, if you insert
student objects into a BST and entries are ordered by GPA, and then a student’s GPA needs to
be updated and all we have is the student’s name and new GPA, we cannot find the student by
name without a full traversal. However, with an additional hash table, we can directly go to
the corresponding entry in the tree.

The BST property is a global property—a binary tree may have the property that each node’s
key is greater than the key at its left child and smaller than the key at its right child, but it may
not be a BST.

Table 11.1: Top Tips for Binary Search Trees

Know your binary search tree libraries

There are two BST-based data structures commonly used in Java—TreeSet and TreeMap. The
former implements the Set interface, and the latter implements the Map interface—refer to 48 for a
review of the Set and Map functionality.
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The sortedness of the keys in a BST means that TreeSet and TreeMap have functionality beyond
that specified by Set and textttMap. First, we describe the functionalities added by TreeSet.
• The iterator returned by iterator() traverses keys in ascending order. (To iterate over keys

in descending order, use descendingIterator().)
• first()/last() yield the smallest and largest keys in the tree.
• lower(12)/higher(3) yield the largest element strictly less than the argument/smallest ele-

ment strictly greater than the argument
• floor(4.9)/ceiling(5.7) yield the largest element less than or equal to the argument/small-

est element greater than or equal to the argument.
• headSet(10), tailSet(5), subSet(1,12) return views of the portion of the keys lying in the

given range. It’s particularly important to note that these operations take O(log n) time, since
they are backed by the underlying tree. This implies changes to the tree may change the view.
It also means that operations like size() have O(n) time complexity.

As always, there are subtleties, e.g., how does first() handle an empty tree, what happens if
lower() is called with null, is the range in subSet() inclusive, etc.

The functionalities added by TreeMap are similar, e.g., floorKey(12) is analogous to floor(12),
headMap(20) is analogous to headSet(20).

The TreeSet and TreeMap constructors permit for an explicit comparator object that is used to
order keys, and you should be comfortable with the syntax used to specify this object. (See on
Page 51 for an example of comparator syntax.)

11.1 Test if a binary tree satisfies the BST property

Write a program that takes as input a binary tree and checks if the tree satisfies the BST property.

Hint: Is it correct to check for each node that its key is greater than or equal to the key at its left child and less

than or equal to the key at its right child?

Solution: A direct approach, based on the definition of a BST, is to begin with the root, and compute
the maximum key stored in the root’s left subtree, and the minimum key in the root’s right subtree.
We check that the key at the root is greater than or equal to the maximum from the left subtree and
less than or equal to the minimum from the right subtree. If both these checks pass, we recursively
check the root’s left and right subtrees. If either check fails, we return false.

Computing the minimum key in a binary tree is straightforward: we take the minimum of the
key stored at its root, the minimum key of the left subtree, and the minimum key of the right subtree.
The maximum key is computed similarly. Note that the minimum can be in either subtree, since a
general binary tree may not satisfy the BST property.

The problem with this approach is that it will repeatedly traverse subtrees. In the worst-case,
when the tree is a BST and each node’s left child is empty, the complexity is O(n2), where n is the
number of nodes. The complexity can be improved toO(n) by caching the largest and smallest keys
at each node; this requires O(n) additional storage for the cache.

We now present two approaches which have O(n) time complexity.
The first approach is to check constraints on the values for each subtree. The initial constraint

comes from the root. Every node in its left (right) subtree must have a key less than or equal (greater
than or equal) to the key at the root. This idea generalizes: if all nodes in a tree must have keys
in the range [l,u], and the key at the root is w (which itself must be between [l,u], otherwise the
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requirement is violated at the root itself), then all keys in the left subtree must be in the range [l,w],
and all keys stored in the right subtree must be in the range [w,u].

As a concrete example, when applied to the BST in Figure 11.1 on Page 58, the initial range is
[−∞,∞]. For the recursive call on the subtree rooted at B, the constraint is [−∞, 19]; the 19 is the
upper bound required by A on its left subtree. For the recursive call starting at the subtree rooted at
F, the constraint is [7, 19]. For the recursive call starting at the subtree rooted at K, the constraint is
[23, 43]. The binary tree in Figure 6.1 on Page 30 is identified as not being a BST when the recursive
call reaches C—the constraint is [−∞, 6], but the key at F is 271, so the tree cannot satisfy the BST
property.

public static boolean isBinaryTreeBST(BinaryTreeNode <Integer> tree) {

return areKeysInRange(tree, Integer.MIN_VALUE , Integer.MAX_VALUE);

}

private static boolean areKeysInRange(BinaryTreeNode <Integer> tree,

Integer lower, Integer upper) {

if (tree == null) {

return true;

} else if (Integer.compare(tree.data, lower) < 0

|| Integer.compare(tree.data, upper) > 0) {

return false;

}

return areKeysInRange(tree.left, lower, tree.data)

&& areKeysInRange(tree.right, tree.data, upper);

}

The time complexity is O(n), and the additional space complexity is O(h), where h is the height of
the tree.

Alternatively, we can use the fact that an inorder traversal visits keys in sorted order. Further-
more, if an inorder traversal of a binary tree visits keys in sorted order, then that binary tree must
be a BST. (This follows directly from the definition of a BST and the definition of an inorder walk.)
Thus we can check the BST property by performing an inorder traversal, recording the key stored
at the last visited node. Each time a new node is visited, its key is compared with the key of the
previously visited node. If at any step in the walk, the key at the previously visited node is greater
than the node currently being visited, we have a violation of the BST property.

All these approaches explore the left subtree first. Therefore, even if the BST property does not
hold at a node which is close to the root (e.g., the key stored at the right child is less than the key
stored at the root), their time complexity is still O(n).

We can search for violations of the BST property in a BFS manner, thereby reducing the time
complexity when the property is violated at a node whose depth is small.

Specifically, we use a queue, where each queue entry contains a node, as well as an upper and
a lower bound on the keys stored at the subtree rooted at that node. The queue is initialized to the
root, with lower bound −∞ and upper bound∞. We iteratively check the constraint on each node.
If it violates the constraint we stop—the BST property has been violated. Otherwise, we add its
children along with the corresponding constraint.

For the example in Figure 11.1 on Page 58, we initialize the queue with (A, [−∞,∞]). Each
time we pop a node, we first check the constraint. We pop the first entry, (A, [−∞,∞]), and add
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its children, with the corresponding constraints, i.e., (B, [−∞, 19]) and (I, [19,∞]). Next we pop
(B, [−∞, 19]), and add its children, i.e., (C, [−∞, 7]) and (D, [7, 19]). Continuing through the nodes,
we check that all nodes satisfy their constraints, and thus verify the tree is a BST.

If the BST property is violated in a subtree consisting of nodes within a particular depth, the
violation will be discovered without visiting any nodes at a greater depth. This is because each
time we enqueue an entry, the lower and upper bounds on the node’s key are the tightest possible.

public static class QueueEntry {

public BinaryTreeNode <Integer> treeNode;

public Integer lowerBound , upperBound;

public QueueEntry(BinaryTreeNode <Integer> treeNode , Integer lowerBound ,

Integer upperBound) {

this.treeNode = treeNode;

this.lowerBound = lowerBound;

this.upperBound = upperBound;

}

}

public static boolean isBinaryTreeBST(BinaryTreeNode <Integer> tree) {

Queue<QueueEntry > BFSQueue = new LinkedList <>();

BFSQueue.add(new QueueEntry(tree, Integer.MIN_VALUE , Integer.MAX_VALUE));

QueueEntry headEntry;

while ((headEntry = BFSQueue.poll()) != null) {

if (headEntry.treeNode != null) {

if (headEntry.treeNode.data < headEntry.lowerBound

|| headEntry.treeNode.data > headEntry.upperBound) {

return false;

}

BFSQueue.add(new QueueEntry(headEntry.treeNode.left,

headEntry.lowerBound ,

headEntry.treeNode.data));

BFSQueue.add(new QueueEntry(headEntry.treeNode.right,

headEntry.treeNode.data,

headEntry.upperBound));

}

}

return true;

}

The time complexity is O(n), and the additional space complexity is O(n).
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Chapter

12
Recursion

The power of recursion evidently lies in the possibility of defining an infinite
set of objects by a finite statement. In the same manner, an infinite number
of computations can be described by a finite recursive program, even if this
program contains no explicit repetitions.

— “Algorithms + Data Structures = Programs,”
N. E. Wirth, 1976

Recursion is an approach to problem solving where the solution depends partially on solutions to
smaller instances of related problems. It is often appropriate when the input is expressed using
recursive rules, such as a computer grammar. More generally, searching, enumeration, divide-
and-conquer, and decomposing a complex problem into a set of similar smaller instances are all
scenarios where recursion may be suitable.

A recursive function consists of base cases and calls to the same function with different argu-
ments. Two key ingredients to a successful use of recursion are identifying the base cases, which
are to be solved directly, and ensuring progress, that is the recursion converges to the solution.

Both backtracking and branch-and-bound are naturally formulated using recursion.

Recursion boot camp

The Euclidean algorithm for calculating the greatest common divisor (GCD) of two numbers is a
classic example of recursion. The central idea is that if y > x, the GCD of x and y is the GCD of x
and y − x. For example, GCD(156, 36) = GCD((156 − 36) = 120, 36). By extension, this implies that
the GCD of x and y is the GCD of x and y mod x, i.e., GCD(156, 36) = GCD((156 mod 36) = 12, 36) =

GCD(12, 36 mod 12 = 0) = 12.

public static long GCD(long x, long y) { return y == 0 ? x : GCD(y, x % y); }

Since with each recursive step one of the arguments is at least halved, it means that the time
complexity isO(log max(x, y)). Put another way, the time complexity isO(n), where n is the number
of bits needed to represent the inputs. The space complexity is also O(n), which is the maximum
depth of the function call stack. (The program is easily converted to one which loops, thereby
reducing the space complexity to O(1).)

Now we describe a problem that can be elegantly solved using a recursive divide-and-conquer
algorithm. A triomino is formed by joining three unit-sized squares in an L-shape. A mutilated
chessboard (henceforth 8 × 8 Mboard) is made up of 64 unit-sized squares arranged in an 8 × 8
square, minus the top-left square, as depicted in Figure 12.1(a) on the next page. Suppose you
are asked to design an algorithm that computes a placement of 21 triominoes that covers the 8 × 8
Mboard. Since the 8× 8 Mboard contains 63 squares, and we have 21 triominoes, a valid placement
cannot have overlapping triominoes or triominoes which extend out of the 8 × 8 Mboard.
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(a) An 8 × 8 Mboard.
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(b) Four 4 × 4 Mboards.

Figure 12.1: Mutilated chessboards.

Divide-and-conquer is a good strategy for this problem. Instead of the 8 × 8 Mboard, let’s
consider an n × n Mboard. A 2 × 2 Mboard can be covered with one triomino since it is of the same
exact shape. You may hypothesize that a triomino placement for an n × n Mboard with the top-left
square missing can be used to compute a placement for an (n + 1) × (n + 1) Mboard. However, you
will quickly see that this line of reasoning does not lead you anywhere.

Another hypothesis is that if a placement exists for an n × n Mboard, then one also exists for a
2n × 2n Mboard. Now we can apply divide-and-conquer. Take four n × n Mboards and arrange
them to form a 2n× 2n square in such a way that three of the Mboards have their missing square set
towards the center and one Mboard has its missing square outward to coincide with the missing
corner of a 2n× 2n Mboard, as shown in Figure 12.1(b). The gap in the center can be covered with a
triomino and, by hypothesis, we can cover the four n × n Mboards with triominoes as well. Hence,
a placement exists for any n that is a power of 2. In particular, a placement exists for the 23

× 23

Mboard; the recursion used in the proof directly yields the placement.

12.1 Generate the power set

The power set of a set S is the set of all subsets of S, including both the empty set ∅ and S itself. The
power set of {0, 1, 2} is graphically illustrated in Figure 12.2 on the next page.

Write a function that takes as input a set and returns its power set.

Hint: There are 2n subsets for a given set S of size n. There are 2k k-bit words.

Solution: A brute-force way is to compute all subsets U that do not include a particular element
(which could be any single element). Then we compute all subsets V which do include that element.
Each subset set must appear in U or in V, so the final result is just U∪V. The construction is recursive,
and the base case is when the input set is empty, in which case we return {{}}.

As an example, let S = {0, 1, 2}. Pick any element, e.g., 0. First, we recursively compute all
subsets of {1, 2}. To do this, we select 1. This leaves us with {2}. Now we pick 2, and get to a
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Recursion is especially suitable when the input is expressed using recursive rules such as a
computer grammar.

Recursion is a good choice for search, enumeration, and divide-and-conquer.

Use recursion as alternative to deeply nested iteration loops. For example, recursion is much
better when you have an undefined number of levels, such as the IP address problem generalized
to k substrings.

If you are asked to remove recursion from a program, consider mimicking call stack with the
stack data structure.

Recursion can be easily removed from a tail-recursive program by using a while-loop—no stack
is needed. (Optimizing compilers do this.)

If a recursive function may end up being called with the same arguments more than once, cache
the results—this is the idea behind Dynamic Programming (Chapter 13).

Table 12.1: Top Tips for Recursion

∅

{0}

{1}

{2}

{0, 1}

{0, 2}

{1, 2}
{0, 1, 2}

Figure 12.2: The power set of {0, 1, 2} is {∅, {0}, {1}, {2}, {0, 1}, {1, 2}, {0, 2}, {0, 1, 2}}.

base case. So the set of subsets of {2} is {} union with {2}, i.e., {{}, {2}}. The set of subsets of {1, 2}
then is {{}, {2}} union with {{1}, {1, 2}}, i.e., {{}, {2}, {1}, {1, 2}}. The set of subsets of {0, 1, 2} then is
{{}, {2}, {1}, {1, 2}} union with {{0}, {0, 2}, {0, 1}, {0, 1, 2}}, i.e., {{}, {2}, {1}, {1, 2}, {0}, {0, 2}, {0, 1}, {0, 1, 2}},

public static List<List<Integer>> generatePowerSet(List<Integer> inputSet) {

List<List<Integer>> powerSet = new ArrayList <>();

directedPowerSet(inputSet, 0, new ArrayList <Integer >(), powerSet);

return powerSet;

}

// Generate all subsets whose intersection with inputSet[0], ...,

// inputSet[toBeSelected - 1] is exactly selectedSoFar.

private static void directedPowerSet(List<Integer> inputSet, int toBeSelected ,

List<Integer> selectedSoFar ,

List<List<Integer>> powerSet) {

if (toBeSelected == inputSet.size()) {

powerSet.add(new ArrayList <>(selectedSoFar));
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return;

}

// Generate all subsets that contain inputSet[toBeSelected].

selectedSoFar.add(inputSet.get(toBeSelected));

directedPowerSet(inputSet, toBeSelected + 1, selectedSoFar , powerSet);

// Generate all subsets that do not contain inputSet[toBeSelected].

selectedSoFar.remove(selectedSoFar.size() - 1);

directedPowerSet(inputSet, toBeSelected + 1, selectedSoFar , powerSet);

}

The number of recursive calls, C(n) satisfies the recurrence C(n) = 2C(n − 1), which solves to
C(n) = O(2n). Since we spend O(n) time within a call, the time complexity is O(n2n). The space
complexity is O(n2n), since there are 2n subsets, and the average subset size is n/2. If we just want
to print the subsets, rather than returning all of them, we simply perform a print instead of adding
the subset to the result, which reduces the space complexity to O(n)—the time complexity remains
the same.

For a given ordering of the elements of S, there exists a one-to-one correspondence between the
2n bit arrays of length n and the set of all subsets of S—the 1s in the n-length bit array v indicate the
elements of S in the subset corresponding to v. For example, if S = {a, b, c, d}, the bit array 〈1, 0, 1, 1〉
denotes the subset {a, c, d}. This observation can be used to derive a nonrecursive algorithm for
enumerating subsets.

In particular, when n is less than or equal to the width of an integer on the architecture (or
language) we are working on, we can enumerate bit arrays by enumerating integers in [0, 2n

− 1]
and examining the indices of bits set in these integers. These indices are determined by first isolating
the lowest set bit by computing y = x&~(x − 1), and then getting the index by computing log y.

private static final double LOG_2 = Math.log(2);

public static List<List<Integer>> generatePowerSet(List<Integer> inputSet) {

List<List<Integer>> powerSet = new ArrayList <>();

for (int intForSubset = 0; intForSubset < (1 << inputSet.size());

++intForSubset) {

int bitArray = intForSubset;

List<Integer> subset = new ArrayList <>();

while (bitArray != 0) {

subset.add(

inputSet.get((int)(Math.log(bitArray & ~(bitArray - 1)) / LOG_2)));

bitArray &= bitArray - 1;

}

powerSet.add(subset);

}

return powerSet;

}

Since each set takes O(n) time to compute, the time complexity is O(n2n). In practice, this approach
is very fast. Furthermore, its space complexity is O(n) when we want to just enumerate subsets,
e.g., to print them, rather that to return all the subsets.

Variant: Solve this problem when the input array may have duplicates, i.e., denotes a multi-
set. You should not repeat any multiset. For example, if A = 〈1, 2, 3, 2〉, then you should return〈
〈〉, 〈1〉, 〈2〉, 〈3〉,〈1, 2〉, 〈1, 3〉, 〈2, 2〉, 〈2, 3〉,〈1, 2, 2〉, 〈1, 2, 3〉, 〈2, 2, 3〉, 〈1, 2, 2, 3〉

〉
.
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Chapter

13
Dynamic Programming

The important fact to observe is that we have attempted to solve a maximization
problem involving a particular value of x and a particular value of N by first
solving the general problem involving an arbitrary value of x and an arbitrary
value of N.

— “Dynamic Programming,”
R. E. Bellman, 1957

DP is a general technique for solving optimization, search, and counting problems that can be
decomposed into subproblems. You should consider using DP whenever you have to make choices
to arrive at the solution, specifically, when the solution relates to subproblems.

Like divide-and-conquer, DP solves the problem by combining the solutions of multiple smaller
problems, but what makes DP different is that the same subproblem may reoccur. Therefore, a
key to making DP efficient is caching the results of intermediate computations. Problems whose
solutions use DP are a popular choice for hard interview questions.

To illustrate the idea underlying DP, consider the problem of computing Fibonacci numbers.
The first two Fibonacci numbers are 0 and 1. Successive numbers are the sums of the two previous
numbers. The first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . . The Fibonacci numbers
arise in many diverse applications—biology, data structure analysis, and parallel computing are
some examples.

Mathematically, the nth Fibonacci number F(n) is given by the equation F(n) = F(n−1)+F(n−2),
with F(0) = 0 and F(1) = 1. A function to compute F(n) that recursively invokes itself has a time
complexity that is exponential in n. This is because the recursive function computes some F(i)s
repeatedly. Figure 13.1 on the facing page graphically illustrates how the function is repeatedly
called with the same arguments.

Caching intermediate results makes the time complexity for computing the nth Fibonacci number
linear in n, albeit at the expense of O(n) storage.

private static Map<Integer, Integer> cache = new HashMap <>();

public static int fibonacci(int n) {

if (n <= 1) {

return n;

} else if (!cache.containsKey(n)) {

cache.put(n, fibonacci(n - 2) + fibonacci(n - 1));

}

return cache.get(n);

}
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F(5), 1

F(3), 11

F(1), 15F(2), 12

F(0), 14F(1), 13

F(4), 2

F(2), 8

F(0), 10F(1), 9

F(3), 3

F(1), 7F(2), 4

F(0), 6F(1), 5

Figure 13.1: Tree of recursive calls when naively computing the 5th Fibonacci number, F(5). Each node is a call: F(x)
indicates a call with argument x, and the italicized numbers on the right are the sequence in which calls take place. The
children of a node are the subcalls made by that call. Note how there are 2 calls to F(3), and 3 calls to each of F(2),
F(1), and F(0).

Minimizing cache space is a recurring theme in DP. Now we show a program that computes
F(n) in O(n) time and O(1) space. Conceptually, in contrast to the above program, this program
iteratively fills in the cache in a bottom-up fashion, which allows it to reuse cache storage to reduce
the space complexity of the cache.

public static int fibonacci(int n) {

if (n <= 1) {

return n;

}

int fMinus2 = 0;

int fMinus1 = 1;

for (int i = 2; i <= n; ++i) {

int f = fMinus2 + fMinus1;

fMinus2 = fMinus1;

fMinus1 = f;

}

return fMinus1;

}

The key to solving a DP problem efficiently is finding a way to break the problem into subprob-
lems such that
• the original problem can be solved relatively easily once solutions to the subproblems are

available, and
• these subproblem solutions are cached.

Usually, but not always, the subproblems are easy to identify.
Here is a more sophisticated application of DP. Consider the following problem: find the

maximum sum over all subarrays of a given array of integer. As a concrete example, the maximum
subarray for the array in Figure 13.2 on the next page starts at index 0 and ends at index 3.

The brute-force algorithm, which computes each subarray sum, has O(n3) time complexity—
there are n(n+1)

2 subarrays, and each subarray sum takes O(n) time to compute. The brute-force
algorithm can be improved to O(n2), at the cost of O(n) additional storage, by first computing
S[k] =

∑
A[0, k] for all k. The sum for A[i, j] is then S[ j] − S[i − 1], where S[−1] is taken to be 0.
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A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

904 40 523 12 -335 -385 -124 481 -31

Figure 13.2: An array with a maximum subarray sum of 1479.

Here is a natural divide-and-conquer algorithm. Take m = b n
2 c to be the middle index of A. Solve

the problem for the subarrays L = A[0,m] and R = A[m + 1,n − 1]. In addition to the answers for
each, we also return the maximum subarray sum l for a subarray ending at the last entry in L, and
the maximum subarray sum r for a subarray starting at the first entry of R. The maximum subarray
sum for A is the maximum of l + r, the answer for L, and the answer for R. The time complexity
analysis is similar to that for quicksort, and the time complexity is O(n log n). Because of off-by-one
errors, it takes some time to get the program just right.

Now we will solve this problem by using DP. A natural thought is to assume we have the
solution for the subarray A[0,n − 2]. However, even if we knew the largest sum subarray for
subarray A[0,n − 2], it does not help us solve the problem for A[0,n − 1]. Instead we need to know
the subarray amongst all subarrays A[0, i], i < n − 1, with the smallest subarray sum. The desired
value is S[n − 1] minus this subarray’s sum. We compute this value by iterating through the array.
For each index j, the maximum subarray sum ending at j is equal to S[ j] −mink≤ j S[k]. During the
iteration, we track the minimum S[k] we have seen so far and compute the maximum subarray
sum for each index. The time spent per index is constant, leading to an O(n) time and O(1) space
solution. It is legal for all array entries to be negative, or the array to be empty. The algorithm
handles these input cases correctly.

public static int findMaximumSubarray(List<Integer> A) {

int minSum = 0, runningSum = 0, maxSum = 0;

for (int i = 0; i < A.size(); ++i) {

runningSum += A.get(i);

if (runningSum < minSum) {

minSum = runningSum;

}

if (runningSum - minSum > maxSum) {

maxSum = runningSum - minSum;

}

}

return maxSum;

}

Dynamic programming boot camp

The programs presented in the introduction for computing the Fibonacci numbers and the maximum
subarray sum are good illustrations of DP.

13.1 Count the number of ways to traverse a 2D array

In this problem you are to count the number of ways of starting at the top-left corner of a 2D array
and getting to the bottom-right corner. All moves must either go right or down. For example, we
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Consider using DP whenever you have to make choices to arrive at the solution. Specifically,
DP is applicable when you can construct a solution to the given instance from solutions to
subinstances of smaller problems of the same kind.

In addition to optimization problems, DP is also applicable to counting and decision prob-
lems—any problem where you can express a solution recursively in terms of the same compu-
tation on smaller instances.

Although conceptually DP involves recursion, often for efficiency the cache is built “bottom-
up”, i.e., iteratively.

When DP is implemented recursively the cache is typically a dynamic data structure such
as a hash table or a BST; when it is implemented iteratively the cache is usually a one- or
multi-dimensional array.

To save space, cache space may be recycled once it is known that a set of entries will not be
looked up again.
A common mistake in solving DP problems is trying to think of the recursive case by splitting the
problem into two equal halves, a la quicksort, i.e., solve the subproblems for subarrays A[0, b n

2 c]
and A[b n

2 c + 1,n] and combine the results. However, in most cases, these two subproblems are
not sufficient to solve the original problem.

DP is based on combining solutions to subproblems to yield a solution to the original problem.
However, for some problems DP will not work. For example, if you need to compute the longest
path from City 1 to City 2 without repeating an intermediate city, and this longest path passes
through City 3, then the subpaths from City 1 to City 3 and City 3 to City 2 may not be
individually longest paths without repeated cities.

Table 13.1: Top Tips for Dynamic Programming

show three ways in a 5 × 5 2D array in Figure 13.3. (As we will see, there are a total of 70 possible
ways for this example.)

Figure 13.3: Paths through a 2D array.

Write a program that counts how many ways you can go from the top-left to the bottom-right in a
2D array.

Hint: If i > 0 and j > 0, you can get to (i, j) from (i − 1, j) or ( j − 1, i).

Solution: A brute-force approach is to enumerate all possible paths. This can be done using
recursion. However, there is a combinatorial explosion in the number of paths, which leads to huge
time complexity.
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The problem statement asks for the number of paths, so we focus our attention on that. A
key observation is that because paths must advance down or right, the number of ways to get
to the bottom-right entry is the number of ways to get to the entry immediately above it, plus
the number of ways to get to the entry immediately to its left. Let’s treat the origin (0, 0) as the
top-left entry. Generalizing, the number of ways to get to (i, j) is the number of ways to get to
(i − 1, j) plus the number of ways to get to (i, j − 1). (If i = 0 or j = 0, there is only one way to get
to (i, j) from the origin.) This is the basis for a recursive algorithm to count the number of paths.
Implemented naively, the algorithm has exponential time complexity—it repeatedly recurses on the
same locations. The solution is to cache results. For example, the number of ways to get to (i, j) for
the configuration in Figure 13.3 on the previous page is cached in a matrix as shown in Figure 13.4.

public static int numberOfWays(int n, int m) {

return computeNumberOfWaysToXY(n - 1, m - 1, new int[n][m]);

}

private static int computeNumberOfWaysToXY(int x, int y,

int[][] numberOfWays) {

if (x == 0 || y == 0) {

return 1;

}

if (numberOfWays[x][y] == 0) {

int waysTop

= x == 0 ? 0 : computeNumberOfWaysToXY(x - 1, y, numberOfWays);

int waysLeft

= x == 0 ? 0 : computeNumberOfWaysToXY(x, y - 1, numberOfWays);

numberOfWays[x][y] = waysTop + waysLeft;

}

return numberOfWays[x][y];

}

The time complexity is O(nm), and the space complexity is O(nm), where n is the number of rows
and m is the number of columns.

1 1 1 1 1

1

1

1

1 2 3 4 5

5

4

3 6 10 15

15

10 20 35

35 70

Figure 13.4: The number of ways to get from (0, 0) to (i, j) for 0 ≤ i, j ≤ 4.

A more analytical way of solving this problem is to use the fact that each path from (0, 0) to
(n − 1,m − 1) is a sequence of m − 1 horizontal steps and n − 1 vertical steps. There are

(n+m−2
n−1

)
=(n+m−2

m−1
)

=
(n+m−2)!

(n−1)!(m−1)! such paths.

Variant: Solve the same problem using O(min(n,m)) space.
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Variant: Solve the same problem in the presence of obstacles, specified by a Boolean 2D array, where
the presence of a true value represents an obstacle.

Variant: A fisherman is in a rectangular sea. The value of the fish at point (i, j) in the sea is specified
by an n × m 2D array A. Write a program that computes the maximum value of fish a fisherman
can catch on a path from the upper leftmost point to the lower rightmost point. The fisherman can
only move down or right, as illustrated in Figure 13.5.
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Figure 13.5: Alternate paths for a fisherman. Different types of fish have different values, which are known to the
fisherman.

Variant: Solve the same problem when the fisherman can begin and end at any point. He must still
move down or right. (Note that the value at (i, j) may be negative.)

Variant: A decimal number is a sequence of digits, i.e., a sequence over {0, 1, 2, . . . , 9}. The sequence
has to be of length 1 or more, and the first element in the sequence cannot be 0. Call a decimal
number D monotone if D[i] ≤ D[i + 1], 0 ≤ i < |D|. Write a program which takes as input a positive
integer k and computes the number of decimal numbers of length k that are monotone.

Variant: Call a decimal number D, as defined above, strictly monotone if D[i] < D[i + 1], 0 ≤ i < |D|.
Write a program which takes as input a positive integer k and computes the number of decimal
numbers of length k that are strictly monotone.
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Chapter

14
Greedy Algorithms and Invariants

The intended function of a program, or part of a program, can be spec-
ified by making general assertions about the values which the relevant
variables will take after execution of the program.

— “An Axiomatic Basis for Computer Programming,”
C. A. R. Hoare, 1969

Sometimes, there are multiple greedy algorithms for a given problem, and only some of them
are optimum. For example, consider 2n cities on a line, half of which are white, and the other half
are black. Suppose we need to pair white with black cities in a one-to-one fashion so that the total
length of the road sections required to connect paired cities is minimized. Multiple pairs of cities
may share a single section of road, e.g., if we have the pairing (0, 4) and (1, 2) then the section of
road between Cities 0 and 4 can be used by Cities 1 and 2.

The most straightforward greedy algorithm for this problem is to scan through the white cities,
and, for each white city, pair it with the closest unpaired black city. This algorithm leads to
suboptimum results. Consider the case where white cities are at 0 and at 3 and black cities are at 2
and at 5. If the white city at 3 is processed first, it will be paired with the black city at 2, forcing the
cities at 0 and 5 to pair up, leading to a road length of 5. In contrast, the pairing of cities at 0 and 2,
and 3 and 5 leads to a road length of 4.

A slightly more sophisticated greedy algorithm does lead to optimum results: iterate through
all the cities in left-to-right order, pairing each city with the nearest unpaired city of opposite color.
Note that the pairing for the first city must be optimum, since if it were to be paired with any other
city, we could always change its pairing to be with the nearest black city without adding any road.
This observation can be used in an inductive proof of overall optimality.

Greedy algorithms boot camp

For US currency, wherein coins take values 1, 5, 10, 25, 50, 100 cents, the greedy algorithm for making
change results in the minimum number of coins. Here is an implementation of this algorithm. Note
that once it selects the number of coins of a particular value, it never changes that selection; this is
the hallmark of a greedy algorithm.

public static int changeMaking(int cents) {

final int[] COINS = {100, 50, 25, 10, 5, 1};

int numCoins = 0;

for (int i = 0; i < COINS.length; i++) {

numCoins += cents / COINS[i];

cents %= COINS[i];

}

return numCoins;
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}

We perform 6 iterations, and each iteration does a constant amount of computation, so the time
complexity is O(1).

A greedy algorithm is often the right choice for an optimization problem where there’s a natural
set of choices to select from.

It’s often easier to conceptualize a greedy algorithm recursively, and then implement it using
iteration for higher performance.

Even if the greedy approach does not yield an optimum solution, it can give insights into the
optimum algorithm, or serve as a heuristic.

Sometimes the correct greedy algorithm is not obvious.

Table 14.1: Top Tips for Greedy Algorithms

Invariants

A common approach to designing an efficient algorithm is to use invariants. Briefly, an invariant is
a condition that is true during execution of a program. This condition may be on the values of the
variables of the program, or on the control logic. A well-chosen invariant can be used to rule out
potential solutions that are suboptimal or dominated by other solutions.

For example, binary search, maintains the invariant that the space of candidate solutions contains
all possible solutions as the algorithm executes.

Sorting algorithms nicely illustrate algorithm design using invariants. Intuitively, selection sort
is based on finding the smallest element, the next smallest element, etc. and moving them to their
right place. More precisely, we work with successively larger subarrays beginning at index 0, and
preserve the invariant that these subarrays are sorted, their elements are less than or equal to the
remaining elements, and the entire array remains a permutation of the original array.

Invariants boot camp

Suppose you were asked to write a program that takes as input a sorted array and a given target
value and determines if there are two entries in the array that add up to that value. For example, if
the array is 〈−2, 1, 2, 4, 7, 11〉, then there are entries adding to 6 and to 10, but not to 0 and 13.

The brute-force algorithm for this problem consists of a pair of nested for loops. Its complexity
is O(n2), where n is the length of the input array. A faster approach is to add each element of the
array to a hash table, and test for each element e if K− e, where K is the target value, is present in the
hash table. While reducing time complexity to O(n), this approach requires O(n) additional storage
for the hash.

The most efficient approach uses invariants: maintain a subarray that is guaranteed to hold a
solution, if it exists. This subarray is initialized to the entire array, and iteratively shrunk from one
side or the other. The shrinking makes use of the sortedness of the array. Specifically, if the sum of
the leftmost and the rightmost elements is less than the target, then the leftmost element can never
be combined with some element to obtain the target. A similar observation holds for the rightmost
element.

73



public static boolean hasTwoSum(List<Integer> A, int t) {

int i = 0, j = A.size() - 1;

while (i <= j) {

if (A.get(i) + A.get(j) == t) {

return true;

} else if (A.get(i) + A.get(j) < t) {

++i;

} else { // A[i] + A[j] > t.

--j;

}

}

return false;

}

The time complexity is O(n), where n is the length of the array. The space complexity is O(1), since
the subarray can be represented by two variables.

Identifying the right invariant is an art. The key strategy to determine whether to use an invari-
ant when designing an algorithm is to work on small examples to hypothesize the invariant.

Often, the invariant is a subset of the set of input space, e.g,. a subarray.

Table 14.2: Top Tips for Invariants

14.1 The 3-sum problem

Design an algorithm that takes as input an array and a number, and determines if there are three
entries in the array (not necessarily distinct) which add up to the specified number. For example,
if the array is 〈11, 2, 5, 7, 3〉 then there are three entries in the array which add up to 21 (3, 7, 11 and
5, 5, 11). (Note that we can use 5 twice, since the problem statement said we can use the same entry
more than once.) However, no three entries add up to 22.

Hint: How would you check if a given array entry can be added to two more entries to get the specified

number?

Solution: First, we consider the problem of computing a pair of entries which sum to K. Assume A
is sorted.We start with the pair consisting of the first element and the last element: (A[0],A[n − 1]).
Let s = A[0] + A[n − 1]. If s = K, we are done. If s < K, we increase the sum by moving to
pair (A[1],A[n − 1]). We need never consider A[0]; since the array is sorted, for all i,A[0] + A[i] ≤
A[0] + A[n−1] = K < s. If s > K, we can decrease the sum by considering the pair (A[0],A[n−2]); by
analogous reasoning, we need never consider A[n − 1] again. We iteratively continue this process
till we have found a pair that sums up to K or the indices meet, in which case the search ends. This
solution works in O(n) time and O(1) space in addition to the space needed to store A.

Now we describe a solution to the problem of finding three entries which sum to t. We sort A
and for each A[i], search for indices j and k such that A[ j] + A[k] = t − A[i]. The additional space
needed is O(1), and the time complexity is the sum of the time taken to sort, O(n log n), and then to
run the O(n) algorithm described in the previous paragraph n times (one for each entry), which is
O(n2) overall. The code for this approach is shown below.
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public static boolean hasThreeSum(List<Integer> A, int t) {

Collections.sort(A);

for (Integer a : A) {

// Finds if the sum of two numbers in A equals to t - a.

if (TwoSum.hasTwoSum(A, t - a)) {

return true;

}

}

return false;

}

The additional space needed is O(1), and the time complexity is the sum of the time taken to sort,
O(n log n), and then to run theO(n) algorithm to find a pair in a sorted array that sums to a specified
value, which is O(n2) overall.

Variant: Solve the same problem when the three elements must be distinct. For example, if A =

〈5, 2, 3, 4, 3〉 and t = 9, then A[2] + A[2] + A[2] is not acceptable, A[2] + A[2] + A[4] is not acceptable,
but A[1] + A[2] + A[3] and A[1] + A[3] + A[4] are acceptable.

Variant: Solve the same problem when k, the number of elements to sum, is an additional input.

Variant: Write a program that takes as input an array of integers A and an integer T, and returns
a 3-tuple (A[p],A[q],A[r]) where p, q, r are all distinct, minimizing |T − (A[p] + A[q] + A[r])|, and
A[p] ≤ A[r] ≤ A[s].

Variant: Write a program that takes as input an array of integers A and an integer T, and returns
the number of 3-tuples (p, q, r) such that A[p] + A[q] + A[r] ≤ T and A[p] ≤ A[q] ≤ A[r].
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Chapter

15
Graphs

Concerning these bridges, it was asked whether anyone could arrange a route in
such a way that he would cross each bridge once and only once.

— “The solution of a problem relating to the geometry of position,”
L. Euler, 1741

Informally, a graph is a set of vertices and connected by edges. Formally, a directed graph is a set
V of vertices and a set E ⊂ V × V of edges. Given an edge e = (u, v), the vertex u is its source, and v
is its sink. Graphs are often decorated, e.g., by adding lengths to edges, weights to vertices, a start
vertex, etc. A directed graph can be depicted pictorially as in Figure 15.1.

A path in a directed graph from u to vertex v is a sequence of vertices 〈v0, v1, . . . , vn−1〉 where
v0 = u, vn−1 = v, and each (vi, vi+1) is an edge. The sequence may consist of a single vertex. The
length of the path 〈v0, v1, . . . , vn−1〉 is n − 1. Intuitively, the length of a path is the number of edges
it traverses. If there exists a path from u to v, v is said to be reachable from u. For example, the
sequence 〈a, c, e, d, h〉 is a path in the graph represented in Figure 15.1.
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Figure 15.1: A directed graph with weights on edges.

A directed acyclic graph (DAG) is a directed graph in which there are no cycles, i.e., paths which
contain one or more edges and which begin and end at the same vertex. See Figure 15.2 on the
facing page for an example of a directed acyclic graph. Vertices in a DAG which have no incoming
edges are referred to as sources; vertices which have no outgoing edges are referred to as sinks. A
topological ordering of the vertices in a DAG is an ordering of the vertices in which each edge is from
a vertex earlier in the ordering to a vertex later in the ordering.
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i jk
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m n

Figure 15.2: A directed acyclic graph. Vertices a, g,m are sources and vertices l, f , h,n are sinks. The ordering
〈a, b, c, e, d, g, h, k, i, j, f , l,m,n〉 is a topological ordering of the vertices.

An undirected graph is also a tuple (V,E); however, E is a set of unordered pairs of vertices.
Graphically, this is captured by drawing arrowless connections between vertices, as in Figure 15.3.
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Figure 15.3: An undirected graph.

If G is an undirected graph, vertices u and v are said to be connected if G contains a path from
u to v; otherwise, u and v are said to be disconnected. A graph is said to be connected if every pair
of vertices in the graph is connected. A connected component is a maximal set of vertices C such
that each pair of vertices in C is connected in G. Every vertex belongs to exactly one connected
component.

For example, the graph in Figure 15.3 is connected, and it has a single connected component. If
edge (h, i) is removed, it remains connected. If additionally ( f , i) is removed, it becomes disconnected
and there are two connected components.

A directed graph is called weakly connected if replacing all of its directed edges with undirected
edges produces an undirected graph that is connected. It is connected if it contains a directed path
from u to v or a directed path from v to u for every pair of vertices u and v. It is strongly connected
if it contains a directed path from u to v and a directed path from v to u for every pair of vertices u
and v.

Graphs naturally arise when modeling geometric problems, such as determining connected
cities. However, they are more general, and can be used to model many kinds of relationships.

A graph can be implemented in two ways—using adjacency lists or an adjacency matrix. In the
adjacency list representation, each vertex v, has a list of vertices to which it has an edge. The
adjacency matrix representation uses a |V| × |V| Boolean-valued matrix indexed by vertices, with
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a 1 indicating the presence of an edge. The time and space complexities of a graph algorithm are
usually expressed as a function of the number of vertices and edges.

A tree (sometimes called a free tree) is a special sort of graph—it is an undirected graph that is
connected but has no cycles. (Many equivalent definitions exist, e.g., a graph is a free tree if and
only if there exists a unique path between every pair of vertices.) There are a number of variants
on the basic idea of a tree. A rooted tree is one where a designated vertex is called the root, which
leads to a parent-child relationship on the nodes. An ordered tree is a rooted tree in which each
vertex has an ordering on its children. Binary trees, which are the subject of Chapter 6, differ from
ordered trees since a node may have only one child in a binary tree, but that node may be a left or
a right child, whereas in an ordered tree no analogous notion exists for a node with a single child.
Specifically, in a binary tree, there is position as well as order associated with the children of nodes.

As an example, the graph in Figure 15.4 is a tree. Note that its edge set is a subset of the edge
set of the undirected graph in Figure 15.3 on the preceding page. Given a graph G = (V,E), if the
graph G′ = (V,E′) where E′ ⊂ E, is a tree, then G′ is referred to as a spanning tree of G.
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m

Figure 15.4: A tree.

Graphs boot camp

Graphs are ideal for modeling and analyzing relationships between pairs of objects. For example,
suppose you were given a list of the outcomes of matches between pairs of teams, with each outcome
being a win or loss. A natural question is as follows: given teams A and B, is there a sequence of
teams starting with A and ending with B such that each team in the sequence has beaten the next
team in the sequence?

A slick way of solving this problem is to model the problem using a graph. Teams are vertices,
and an edge from one team to another indicates that the team corresponding to the source vertex
has beaten the team corresponding to the destination vertex. Now we can apply graph reachability
to perform the check. Both DFS and BFS are reasonable approaches—the program below uses DFS.

public static class MatchResult {

public String winningTeam;

public String losingTeam;

public MatchResult(String winningTeam , String losingTeam) {

this.winningTeam = winningTeam;

this.losingTeam = losingTeam;

}

}

public static boolean canTeamABeatTeamB(List<MatchResult > matches,

String teamA, String teamB) {
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Set<String> visited = new HashSet <>();

return isReachableDFS(buildGraph(matches), teamA, teamB, visited);

}

private static Map<String, Set<String>> buildGraph(

List<MatchResult > matches) {

Map<String, Set<String>> graph = new HashMap <>();

for (MatchResult match : matches) {

Set<String> edges = graph.get(match.winningTeam);

if (edges == null) {

edges = new HashSet <>();

graph.put(match.winningTeam , edges);

}

edges.add(match.losingTeam);

}

return graph;

}

private static boolean isReachableDFS(Map<String, Set<String>> graph,

String curr, String dest,

Set<String> visited) {

if (curr.equals(dest)) {

return true;

} else if (visited.contains(curr) || graph.get(curr) == null) {

return false;

}

visited.add(curr);

for (String team : graph.get(curr)) {

if (isReachableDFS(graph, team, dest, visited)) {

return true;

}

}

return false;

}

The time complexity and space complexity are both O(E), where E is the number of outcomes.

It’s natural to use a graph when the problem involves spatially connected objects, e.g., road
segments between cities.

More generally, consider using a graph when you need to analyze any binary relationship,
between objects, such as interlinked webpages, followers in a social graph, etc. In such cases,
quite often the problem can be reduced to a well-known graph problem.

Some graph problems entail analyzing structure, e.g., looking for cycles or connected compo-
nents. DFS works particularly well for these applications.

Some graph problems are related to optimization, e.g., find the shortest path from one vertex to
another. BFS, Dijkstra’s shortest path algorithm, and minimum spanning tree are examples
of graph algorithms appropriate for optimization problems.

Table 15.1: Top Tips for Graphs
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Graph search

Computing vertices which are reachable from other vertices is a fundamental operation which
can be performed in one of two idiomatic ways, namely depth-first search (DFS) and breadth-first
search (BFS). Both have linear time complexity—O(|V|+ |E|) to be precise. In the worst-case there is
a path from the initial vertex covering all vertices without any repeats, and the DFS edges selected
correspond to this path, so the space complexity of DFS is O(|V|) (this space is implicitly allocated
on the function call stack). The space complexity of BFS is also O(|V|), since in a worst-case there
is an edge from the initial vertex to all remaining vertices, implying that they will all be in the BFS
queue simultaneously at some point.

DFS and BFS differ from each other in terms of the additional information they provide, e.g.,
BFS can be used to compute distances from the start vertex and DFS can be used to check for the
presence of cycles. Key notions in DFS include the concept of discovery time and finishing time for
vertices.

15.1 Paint a Boolean matrix

Let A be a Boolean 2D array encoding a black-and-white image. The entry A(a, b) can be viewed
as encoding the color at entry (a, b). Call two entries adjacent if one is to the left, right, above or
below the other. Note that the definition implies that an entry can be adjacent to at most four other
entries, and that adjacency is symmetric, i.e., if e0 is adjacent to entry e1, then e1 is adjacent to e0.

Define a path from entry e0 to entry e1 to be a sequence of adjacent entries, starting at e0, ending
at e1, with successive entries being adjacent. Define the region associated with a point (i, j) to be all
points (i′, j′) such that there exists a path from (i, j) to (i′, j′) in which all entries are the same color.
In particular this implies (i, j) and (i′, j′) must be the same color.

(a) (b) (c)

Figure 15.5: The color of all squares associated with the first square marked with a × in (a) have been recolored to
yield the coloring in (b). The same process yields the coloring in (c).

Implement a routine that takes an n ×m Boolean array A together with an entry (x, y) and flips the
color of the region associated with (x, y). See Figure 15.5 for an example of flipping.

Hint: Solve this conceptually, then think about implementation optimizations.

Solution:
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Chapter

16
Parallel Computing

The activity of a computer must include the proper reacting to a possibly
great variety of messages that can be sent to it at unpredictable moments,
a situation which occurs in all information systems in which a number of
computers are coupled to each other.

— “Cooperating sequential processes,”
E. W. Dijkstra, 1965

Parallel computation has become increasingly common. For example, laptops and desktops come
with multiple processors which communicate through shared memory. High-end computation is
often done using clusters consisting of individual computers communicating through a network.

Parallelism provides a number of benefits:
• High performance—more processors working on a task (usually) means it is completed faster.
• Better use of resources—a program can execute while another waits on the disk or network.
• Fairness—letting different users or programs share a machine rather than have one program

run at a time to completion.
• Convenience—it is often conceptually more straightforward to do a task using a set of con-

current programs for the subtasks rather than have a single program manage all the subtasks.
• Fault tolerance—if a machine fails in a cluster that is serving web pages, the others can take

over.
Concrete applications of parallel computing include graphical user interfaces (GUI) (a dedicated

thread handles UI actions while other threads are, for example, busy doing network communication
and passing results to the UI thread, resulting in increased responsiveness), Java virtual machines (a
separate thread handles garbage collection which would otherwise lead to blocking, while another
thread is busy running the user code), web servers (a single logical thread handles a single client
request), scientific computing (a large matrix multiplication can be split across a cluster), and web
search (multiple machines crawl, index, and retrieve web pages).

The two primary models for parallel computation are the shared memory model, in which
each processor can access any location in memory, and the distributed memory model, in which a
processor must explicitly send a message to another processor to access its memory. The former is
more appropriate in the multicore setting and the latter is more accurate for a cluster. The questions
in this chapter are focused on the shared memory model.

Writing correct parallel programs is challenging because of the subtle interactions between
parallel components. One of the key challenges is races—two concurrent instruction sequences
access the same address in memory and at least one of them writes to that address. Other challenges
to correctness are
• starvation (a processor needs a resource but never gets it),
• deadlock (Thread A acquires Lock L1 and Thread B acquires Lock L2, following which A tries

to acquire L2 and B tries to acquire L1), and
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• livelock (a processor keeps retrying an operation that always fails).
Bugs caused by these issues are difficult to find using testing. Debugging them is also difficult
because they may not be reproducible since they are usually load dependent. It is also often true
that it is not possible to realize the performance implied by parallelism—sometimes a critical task
cannot be parallelized, making it impossible to improve performance, regardless of the number
of processors added. Similarly, the overhead of communicating intermediate results between
processors can exceed the performance benefits.

Parallel computing boot camp

A semaphore is a very powerful synchronization construct. Conceptually, a semaphore maintains
a set of permits. A thread calling acquire() on a semaphore waits, if necessary, until a permit is
available, and then takes it. A thread calling release() on a semaphore adds a permit and notifies
threads waiting on that semaphore, potentially releasing a blocking acquirer. The program below
shows how to implement a semaphore in Java, using synchronization, wait(), and notify() language
primitives. (The Java concurrency library provides a full-featured implementation of semaphores
which should be used in practice.)

public class Semaphore {

private final int MAX_AVAILABLE;

private int taken;

public Semaphore(int maxAvailable) {

this.MAX_AVAILABLE = maxAvailable;

this.taken = 0;

}

public synchronized void acquire() throws InterruptedException {

while (this.taken == MAX_AVAILABLE) {

wait();

}

this.taken++;

}

public synchronized void release() throws InterruptedException {

this.taken--;

this.notifyAll();

}

}

Start with an algorithm that locks aggressively and is easily seen to be correct. Then add back
concurrency, while ensuring the critical parts are locked.

When analyzing parallel code, assume a worst-case thread scheduler. In particular, it may
choose to schedule the same thread repeatedly, it may alternate between two threads, it may
starve a thread, etc.

Try to work at a higher level of abstraction. In particular, know the concurrency libraries—
don’t implement your own semaphores, thread pools, deferred execution, etc. (You should
know how these features are implemented, and implement them if asked to.)

Table 16.1: Top Tips for Concurrency
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16.1 Implement a Timer class

Consider a web-based calendar in which the server hosting the calendar has to perform a task when
the next calendar event takes place. (The task could be sending an email or a Short Message Service
(SMS).) Your job is to design a facility that manages the execution of such tasks.

Develop a timer class that manages the execution of deferred tasks. The timer constructor takes as
its argument an object which includes a run method and a string-valued name field. The class must
support—(1.) starting a thread, identified by name, at a given time in the future; and (2.) canceling
a thread, identified by name (the cancel request is to be ignored if the thread has already started).

Hint: There are two aspects—data structure design and concurrency.

Solution: The two aspects to the design are the data structures and the locking mechanism.
We use two data structures. The first is a min-heap in which we insert key-value pairs: the keys

are run times and the values are the thread to run at that time. A dispatch thread runs these threads;
it sleeps from call to call and may be woken up if a thread is added to or deleted from the pool. If
woken up, it advances or retards its remaining sleep time based on the top of the min-heap. On
waking up, it looks for the thread at the top of the min-heap—if its launch time is the current time,
the dispatch thread deletes it from the min-heap and executes it. It then sleeps till the launch time
for the next thread in the min-heap. (Because of deletions, it may happen that the dispatch thread
wakes up and finds nothing to do.)

The second data structure is a hash table with thread ids as keys and entries in the min-heap as
values. If we need to cancel a thread, we go to the min-heap and delete it. Each time a thread is
added, we add it to the min-heap; if the insertion is to the top of the min-heap, we interrupt the
dispatch thread so that it can adjust its wake up time.

Since the min-heap is shared by the update methods and the dispatch thread, we need to lock it.
The simplest solution is to have a single lock that is used for all read and writes into the min-heap
and the hash table.

83



Part II

Domain Specific Problems



Chapter

17
Design Problems

Don’t be fooled by the many books on complexity or by the many
complex and arcane algorithms you find in this book or elsewhere.
Although there are no textbooks on simplicity, simple systems
work and complex don’t.

— “Transaction Processing: Concepts and Techniques,”
J. Gray, 1992

You may be asked in an interview how to go about creating a set of services or a larger system,
possibly on top of an algorithm that you have designed. These problems are fairly open-ended,
and many can be the starting point for a large software project.

In an interview setting when someone asks such a question, you should have a conversation in
which you demonstrate an ability to think creatively, understand design trade-offs, and attack un-
familiar problems. You should sketch key data structures and algorithms, as well as the technology
stack (programming language, libraries, OS, hardware, and services) that you would use to solve
the problem.

The answers in this chapter are presented in this context—they are meant to be examples of
good responses in an interview and are not comprehensive state-of-the-art solutions.

We review patterns that are useful for designing systems in Table 17.1. Some other things to
keep in mind when designing a system are implementation time, extensibility, scalability, testability,
security, internationalization, and IP issues.

Table 17.1: System design patterns.

Design principle Key points

Algorithms and Data Struc-
tures

Identify the basic algorithms and data structures

Decomposition Split the functionality, architecture, and code into manageable,
reusable components.

Scalability Break the problem into subproblems that can be solved rela-
tively independently on different machines. Shard data across
machines to make it fit. Decouple the servers that handle writes
from those that handle reads. Use replication across the read
servers to gain more performance. Consider caching computa-
tion and later look it up to save work.

Decomposition

Good decompositions are critical to successfully solving system-level design problems. Function-
ality, architecture, and code all benefit from decomposition.

85



For example, in our solution to designing a system for online advertising, we decompose the
goals into categories based on the stake holders. We decompose the architecture itself into a front-
end and a back-end. The front-end is divided into user management, web page design, reporting
functionality, etc. The back-end is made up of middleware, storage, database, cron services, and
algorithms for ranking ads.

Decomposing code is a hallmark of object-oriented programming. The subject of design patterns
is concerned with finding good ways to achieve code-reuse. Broadly speaking, design patterns
are grouped into creational, structural, and behavioral patterns. Many specific patterns are very
natural—strategy objects, adapters, builders, etc., appear in a number of places in our codebase.
Freeman et al.’s “Head First Design Patterns” is, in our opinion, the right place to study design
patterns.

Scalability

In the context of interview questions parallelism is useful when dealing with scale, i.e., when the
problem is too large to fit on a single machine or would take an unacceptably long time on a single
machine. The key insight you need to display is that you know how to decompose the problem so
that
• each subproblem can be solved relatively independently, and
• the solution to the original problem can be efficiently constructed from solutions to the sub-

problems.
Efficiency is typically measured in terms of central processing unit (CPU) time, random access
memory (RAM), network bandwidth, number of memory and database accesses, etc.

Consider the problem of sorting a petascale integer array. If we know the distribution of the
numbers, the best approach would be to define equal-sized ranges of integers and send one range
to one machine for sorting. The sorted numbers would just need to be concatenated in the correct
order. If the distribution is not known then we can send equal-sized arbitrary subsets to each
machine and then merge the sorted results, e.g., using a min-heap.

Caching is a great tool whenever computations are repeated. For example, the central idea
behind dynamic programming is caching results from intermediate computations. Caching is also
extremely useful when implementing a service that is expected to respond to many requests over
time, and many requests are repeated. Workloads on web services exhibit this property.

17.1 Design a system for detecting copyright infringement

YouTV.com is a successful online video sharing site. Hollywood studios complain that much of the
material uploaded to the site violates copyright.

Design a feature that allows a studio to enter a set V of videos that belong to it, and to determine
which videos in the YouTV.com database match videos in V.

Hint: Normalize the video format and create signatures.

Solution: Videos differ from documents in that the same content may be encoded in many different
formats, with different resolutions, and levels of compression.

One way to reduce the duplicate video problem to the duplicate document problem is to re-
encode all videos to a common format, resolution, and compression level. This in itself does not
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mean that two videos of the same content get reduced to identical files—the initial settings affect
the resulting videos. However, we can now “signature” the normalized video.

A trivial signature would be to assign a 0 or a 1 to each frame based on whether it has more or
less brightness than average. A more sophisticated signature would be a 3 bit measure of the red,
green, and blue intensities for each frame. Even more sophisticated signatures can be developed,
e.g., by taking into account the regions on individual frames. The motivation for better signatures
is to reduce the number of false matches returned by the system, and thereby reduce the amount of
time needed to review the matches.

The solution proposed above is algorithmic. However, there are alternative approaches that
could be effective: letting users flag videos that infringe copyright (and possibly rewarding them
for their effort), checking for videos that are identical to videos that have previously been identified
as infringing, looking at meta-information in the video header, etc.

Variant: Design an online music identification service.
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Chapter

18
Language Questions

The limits of my language means the limits of my world.

— L. Wittgenstein

We now present some commonly asked problems on the Java language. This set is not meant to
be comprehensive—it’s a test of preparedness. If you have a hard time with them, we recommend
that you spend more time reviewing language basics.

18.1 equals() vs. ==

Compare and contrast equals() and ==.

Solution: First of all, this question only makes sense for reference types—primitive types can only
be compared using ==, which does pretty much what you’d expect.

A variable of a reference type holds an address. If x and y are variables of a reference type, then
x == y tests if they hold the same address.

Very often, it is the case that objects that are located at distinct places in memory have the
same content. In this case, we want to use logical equality. Every object inherits a equals(Object

o) method from the Object class. The default implementation is the same as ==. However, it is
typically overridden to test logical equality.

The usual recipe is to first test if == holds (to boost performance), then use instanceof to see
if the argument has the right type, then cast the argument to the correct type, and finally, for each
“significant” field check if the field of the argument matches this’ corresponding field.

It’s fine to rely on == in some cases, most notably when the class ensures at most one object exists
with a given value.
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Chapter

19
Object-Oriented Design

One thing expert designers know not to do is solve every problem from first
principles.

— “Design Patterns: Elements of Reusable Object-Oriented Software,”
E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides, 1994

A class is an encapsulation of data and methods that operate on that data. Classes match the way
we think about computation. They provide encapsulation, which reduces the conceptual burden of
writing code, and enable code reuse, through the use of inheritance and polymorphism. However,
naive use of object-oriented constructs can result in code that is hard to maintain.

A design pattern is a general repeatable solution to a commonly occurring problem. It is not a
complete design that can be coded up directly—rather, it is a description of how to solve a problem
that arises in many different situations. In the context of object-oriented programming, design
patterns address both reuse and maintainability. In essence, design patterns make some parts of a
system vary independently from the other parts.

Adnan’s Design Pattern course material, available freely online, contains lecture notes, home-
works, and labs that may serve as a good resource on the material in this chapter.

19.1 Creational Patterns

Explain what each of these creational patterns is: builder, static factory, factory method, and abstract
factory.
Solution: The idea behind the builder pattern is to build a complex object in phases. It avoids
mutability and inconsistent state by using an mutable inner class that has a build method that
returns the desired object. Its key benefits are that it breaks down the construction process, and can
give names to steps. Compared to a constructor, it deals far better with optional parameters and
when the parameter list is very long. For example, the MapMaker class for caching in the Guava
library makes it very clear how the cache is organized.

A static factory is a function for construction of objects. Its key benefits are as follow: the
function’s name can make what it’s doing much clearer compared to a call to a constructor. The
function is not obliged to create a new object—in particular, it can return a flyweight. It can also
return a subtype that’s more optimized, e.g., it can choose to construct an object that uses an
integer in place of a Boolean array if the array size is not more than the integer word size. The
method Integer.valueOf(“123”) is a good example of a static factory—it caches values in the
range [−128, 127] that are already exist, thereby reducing memory footprint and construction time.
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A factory method defines interface for creating an object, but lets subclasses decide which class
to instantiate. The classic example is a maze game with two modes—one with regular rooms, and
one with magic rooms.

public abstract class MazeGame {

// Note the use of the template method pattern - subclasses

// implement MakeRoom() as appropriate for the type of room being created.

public MazeGame() {

Room room1 = makeRoom();

Room room2 = makeRoom();

room1.connect(room2);

this.addRoom(room1);

this.addRoom(room2);

}

// Implementing classes provide this method.

abstract protected Room makeRoom();

}

This snippet implements the regular rooms.

public class OrdinaryMazeGame extends MazeGame {

// The default constructor will call superclass constructor.

@Override

protected Room makeRoom() {

return new OrdinaryRoom();

}

}

This snippet implements the magic rooms.

public class MagicMazeGame extends MazeGame {

// The default constructor will call superclass constructor.

@Override

protected Room makeRoom() {

return new MagicRoom();

}

}

Here’s how you use the factory to create regular and magic games.

MazeGame ordinaryGame = new OrdinaryMazeGame();

MazeGame magicGame = new MagicMazeGame();

A drawback of the factory method pattern is that it makes subclassing challenging.
An abstract factory provides an interface for creating families of related objects without specify-

ing their concrete classes. For example, a class DocumentCreator could provide interfaces to create
a number of products, such as createLetter() and createResume(). Concrete implementations of
this class could choose to implement these products in different ways, e.g., with modern or classic
fonts, right-flush or right-ragged layout, etc. Client code gets a DocumentCreator object and calls
its factory methods. Use of this pattern makes it possible to interchange concrete implementations
without changing the code that uses them, even at runtime. The price for this flexibility is more
planning and upfront coding, as well as and code that may be harder to understand, because of the
added indirections.

90



Chapter

20
Common Tools

UNIX is a general-purpose, multi-user, interactive operating sys-
tem for the Digital Equipment Corporation PDP-11/40 and 11/45
computers. It offers a number of features seldom found even in
larger operating systems, including: (1) a hierarchical file system
incorporating demountable volumes; (2) compatible file, device,
and inter-process I/O; (3) the ability to initiate asynchronous pro-
cesses; (4) system command language selectable on a per-user
basis; and (5) over 100 subsystems including a dozen languages.

— “The UNIX TimeSharing System,”
D. Ritchie and K. Thompson, 1974

The problems in this chapter are concerned with tools: version control systems, scripting lan-
guages, build systems, databases, and the networking stack. Such problems are not commonly
asked—expect them only if you are interviewing for a specialized role, or if you claim specialized
knowledge, e.g., network security or databases. We emphasize these are vast subjects, e.g., net-
working is taught as a sequence of courses in a university curriculum. Our goal here is to give
you a flavor of what you might encounter. Adnan’s Advanced Programming Tools course mate-
rial, available freely online, contains lecture notes, homeworks, and labs that may serve as a good
resource on the material in this chapter.

Version control

Version control systems are a cornerstone of software development—every developer should un-
derstand how to use them in an optimal way.

20.1 Merging in a version control system

What is merging in a version control system? Specifically, describe the limitations of line-based
merging and ways in which they can be overcome.
Solution:

Modern version control systems allow developers to work concurrently on a personal copy of
the entire codebase. This allows software developers to work independently. The price for this
merging: periodically, the personal copies need to be integrated to create a new shared version.
There is the possibility that parallel changes are conflicting, and these must be resolved during the
merge.

By far, the most common approach to merging is text-based. Text-based merge tools view
software as text. Line-based merging is a kind of text-based merging, specifically one in which each
line is treated as an indivisible unit. The merging is “three-way”: the lowest common ancestor in
the revision history is used in conjunction with the two versions. With line-based merging of text
files, common text lines can be detected in parallel modifications, as well as text lines that have been
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inserted, deleted, modified, or moved. Figure 20.1 on the next page shows an example of such a
line-based merge.

One issue with line-based merging is that it cannot handle two parallel modifications to the
same line: the two modifications cannot be combined, only one of the two modifications must be
selected. A bigger issue is that a line-based merge may succeed, but the resulting program is broken
because of syntactic or semantic conflicts. In the scenario in Figure 20.1 on the facing page the
changes made by the two developers are made to independent lines, so the line-based merge shows
no conflicts. However, the program will not compile because a function is called incorrectly.

In spite of this, line-based merging is widely used because of its efficiency, scalability,and
accuracy. A three-way, line-based merge tool in practice will merge 90% of the changed files
without any issues. The challenge is to automate the remaining 10% of the situations that cannot
be merged automatically.

Text-based merging fails because it does not consider any syntactic or semantic information.
Syntactic merging takes the syntax of the programming language into account. Text-based merge

often yields unimportant conflicts such as a code comment that has been changed by different
developers or conflicts caused by code reformatting. A syntactic merge can ignore all these: it
displays a merge conflict when the merged result is not syntactically correct.

We illustrate syntactic merging with a small example:

if (n%2 == 0) then m = n/2;

Two developers change this code in a different ways, but with the same overall effect. The first
updates it to

if (n%2 == 0) then m = n/2 else m = (n-1)/2;

and the second developer’s update is

m = n/2;

Both changes to the same thing. However, a textual-merge will likely result in

m := n div 2 else m := (n-1)/2

which is syntactically incorrect. Syntactic merge identifies the conflict; it is the integrator’s respon-
sibility to manually resolve it, e.g., by removing the else portion.

Syntactic merge tools are unable to detect some frequently occurring conflicts. For example, in
the merge of Versions 1a and 1b in Figure 20.1 on the next page will not compile, since the call to
sum(10) has the wrong signature. Syntactic merge will not detect this conflict since the program is
still syntactically correct. The conflict is a semantic conflict, specifically, a static semantic conflict,
since it is detectable at compile-time. (The compile will return something like “function argument
mismatch error”.)

Technically, syntactic merge algorithms operate on the parse trees of the programs to be merged.
More powerful static semantic merge algorithms have been proposed that operate on a graph
representation of the programs, wherein definitions and usage are linked, making it easier to
identify mismatched usage.

Static semantic merging also has shortcomings. For example, suppose Point is a class rep-
resenting 2D-points using Cartesian coordinates, and that this class has a distance function that
returns

√
x2 + y2. Suppose Alice checks out the project, and subclasses Point to create a class that

supports polar coordinates, and uses Points’s distance function to return the radius. Concurrently,
Bob checks out the project and changes Point’s distance function to return |x| + |y|. Static semantic
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merging reports no conflicts: the merged program compiles without any trouble. However the
behavior is not what was expected.

Both syntactic merging and semantic merging greatly increase runtimes, and are very limiting
since they are tightly coupled to specific programming languages. In practice, line-based merging
is used in conjunction with a small set of unit tests (a “smoke suite”) invoked with a pre-commit
hook script. Compilation finds syntax and static semantics errors, and the tests (hopefully) identify
deeper semantic issues.

int sum(int n) {
int total = 0;
for (int i = 0; i < n; i++) {
total = total + i;

}
return total;

};

Version 1

void sum(int n, int* result) {
int total = 0;
for (int i = 0; i < n; i++) {
total = total + i;

}
*result = total;

};

Version 1a

int sum(int n) {
if (n < 0) {
return 0;

}
int total = 0;
for (int i = 0; i < n; i++) {
total += i;

}
return total;

};
...
int x = sum(10);

Version 1b

void sum(int n, int* result) {
if (n < 0) {
return 0;

}
int total = 0;
for (int i = 0; i < n; i++) {
total = total + i;

}
*result = total;

};
...
int x = sum(10);

Merge of Versions 1a and 1b

Figure 20.1: An example of a 3-way line based merge.

Scripting languages

Scripting languages, such as AWK, Perl, and Python were originally developed as tools for quick
hacks, rapid prototyping, and gluing together other programs. They have evolved into mainstream
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programming languages. Some of their characteristics are as follows.
• Text strings are the basic (sometimes only) data type.
• Associative arrays are a basic aggregate type.
• Regexps are usually built in.
• Programs are interpreted rather than compiled.
• Declarations are often not required.

They are easy to get started with, and can often do a great deal with very little code.

Build systems

A program typically cannot be executed immediately after change: intermediate steps are required
to build the program and test it before deploying it. Other components can also be affected by
changes, such as documentation generated from program text. Build systems automate these steps.

Database

Most software systems today interact with databases, and it’s important for developers to have
basic knowledge of databases.

Networking

Most software systems today interact with the network, and it’s important for developers even
higher up the stack to have basic knowledge of networking. Here are networking questions you
may encounter in an interview setting.
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The Honors Class



Chapter

21
Honors Class

The supply of problems in mathematics is inexhaustible,
and as soon as one problem is solved numerous others
come forth in its place.

— “Mathematical Problems,”
D. Hilbert, 1900

This chapter contains problems that are more difficult to solve than the ones presented earlier. Many
of them are commonly asked at interviews, albeit with the expectation that the candidate will not
deliver the best solution.

There are several reasons why we included these problems:
• Although mastering these problems is not essential to your success, if you do solve them, you

will have put yourself into a very strong position, similar to training for a race with ankle
weights.

• If you are asked one of these questions or a variant thereof, and you successfully derive the
best solution, you will have strongly impressed your interviewer. The implications of this go
beyond being made an offer—your salary, position, and status will all go up.

• Some of the problems are appropriate for candidates interviewing for specialized positions,
e.g., optimizing large scale distributed systems, machine learning for computational finance,
etc. They are also commonly asked of candidates with advanced degrees.

• Finally, if you love a good challenge, these problems will provide it!
You should be happy if your interviewer asks you a hard question—it implies high expectations,
and is an opportunity to shine, compared, for example, to being asked to write a program that tests
if a string is palindromic.

Intractability

Coding problems asked in interviews almost always have one (or more) solutions that are fast, e.g.,
O(n) time complexity. Sometimes, you may be asked a problem that is computationally intractable—
there may not exist an efficient algorithm for it. (Such problems are common in the real world.)
There are a number of approaches to solving intractable problems:
• brute-force solutions, including dynamic programming, which have exponential time com-

plexity, may be acceptable, if the instances encountered are small, or if the specific parameter
that the complexity is exponential in is small;

• search algorithms, such as backtracking, branch-and-bound, and hill-climbing, which prune
much of the complexity of a brute-force search;
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• approximation algorithms which return a solution that is provably close to optimum;
• heuristics based on insight, common case analysis, and careful tuning that may solve the

problem reasonably well;
• parallel algorithms, wherein a large number of computers can work on subparts simultane-

ously.

21.1 Compute the greatest common divisor

The greatest common divisor (GCD) of nonnegative integers x and y is the largest integer d such
that d divides x evenly, and d divides y evenly, i.e., x mod d = 0 and y mod d = 0. (When both x
and y are 0, take their GCD to be 0.)

Design an efficient algorithm for computing the GCD of two nonnegative integers without using
multiplication, division or the modulus operators.

Hint: Use case analysis: both even; both odd; one even and one odd.

Solution: The straightforward algorithm is based on recursion. If x = y, GCD(x, y) = x; otherwise,
assume without loss of generality, that x > y. Then GCD(x, y) is the GCD(x − y, y).

The recursive algorithm based on the above does not use multiplication, division or modulus,
but for some inputs it is very slow. As an example, if the input is x = 2n, y = 2, the algorithm
makes 2n−1 recursive calls. The time complexity can be improved by observing that the repeated
subtraction amounts to division, i.e., when x > y, GCD(x, y) = GCD(y, x mod y), but this approach
uses integer division which was explicitly disallowed in the problem statement.

Here is a fast solution, which is also based on recursion, but does not use general multiplication
or division. Instead it uses case-analysis, specifically, the cases of one, two, or none of the numbers
being even.

An example is illustrative. Suppose we were to compute the GCD of 24 and 300. Instead
of repeatedly subtracting 24 from 300, we can observe that since both are even, the result is 2 ×
GCD(12, 150). Dividing by 2 is a right shift by 1, so we do not need a general division operation.
Since 12 and 150 are both even, GCD(12, 150) = 2 × GCD(6, 75). Since 75 is odd, the GCD of 6 and
75 is the same as the GCD of 3 and 75, since 2 cannot divide 75. The GCD of 3 and 75 is the GCD
of 3 and 75 − 3 = 72. Repeatedly applying the same logic, GCD(3, 72) = GCD(3, 36) = GCD(3, 18) =

GCD(3, 9) = GCD(3, 6) = GCD(3, 3) = 3. This implies GCD(24, 300) = 2 × 2 × 3 = 12.
More generally, the base case is when the two arguments are equal, in which case the GCD is

that value, e.g., GCD(12, 12) = 12, or one of the arguments is zero, in which case the other is the
GCD, e.g., GCD(0, 6) = 6.

Otherwise, we check if none, one, or both numbers are even. If both are even, we compute the
GCD of the halves of the original numbers, and return that result times 2; if exactly one is even, we
half it, and return the GCD of the resulting pair; if both are odd, we subtract the smaller from the
larger and return the GCD of the resulting pair. Multiplication by 2 is trivially implemented with a
single left shift. Division by 2 is done with a single right shift.

public static long GCD(long x, long y) {

if (x > y) {

return GCD(y, x);

} else if (x == 0) {
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return y;

} else if ((x & 1) == 0 && (y & 1) == 0) { // x and y are even.

return GCD(x >>> 1, y >>> 1) << 1;

} else if ((x & 1) == 0 && (y & 1) != 0) { // x is even, y is odd.

return GCD(x >>> 1, y);

} else if ((x & 1) != 0 && (y & 1) == 0) { // x is odd, y is even.

return GCD(x, y >>> 1);

}

return GCD(x, y - x); // Both x and y are odd.

}

Note that the last step leads to a recursive call with one even and one odd number. Consequently, in
every two calls, we reduce the combined bit length of the two numbers by at least one, meaning that
the time complexity is proportional to the sum of the number of bits in x and y, i.e.,O(log x + log y)).

21.2 Compute the maximum product of all entries but one

Suppose you are given an array A of integers, and are asked to find the largest product that can be
made by multiplying all but one of the entries in A. (You cannot use an entry more than once.) For
example, if A = 〈3, 2, 5, 4〉, the result is 3 × 5 × 4 = 60, if A = 〈3, 2,−1, 4〉, the result is 3 × 2 × 4 = 24,
and if A = 〈3, 2,−1, 4,−1, 6〉, the result is 3 × −1 × 4 × −1 × 6 = 72.

One approach is to form the product P of all the elements, and then find the maximum of P/A[i]
over all i. This takes n − 1 multiplications (to form P) and n divisions (to compute each P/A[i]).
Suppose because of finite precision considerations we cannot use a division-based approach; we
can only use multiplications. The brute-force solution entails computing all n products of n − 1
elements; each such product takes n − 2 multiplications, i.e., O(n2) time complexity.

Given an array A of length n whose entries are integers, compute the largest product that can be
made using n − 1 entries in A. You cannot use an entry more than once. Array entries may be
positive, negative, or 0. Your algorithm cannot use the division operator, explicitly or implicitly.

Hint: Consider the products of the first i − 1 and the last n − i elements. Alternatively, count the number of

negative entries and zero entries.

Solution: The brute-force approach to compute P/A[i] is to multiplying the entries appearing before
i with those that appear after i. This leads to n(n − 2) multiplications, since for each term P/A[i] we
need n − 2 multiplications.

Note that there is substantial overlap in computation when computing P/A[i] and P/A[i + 1]. In
particular, the product of the entries appearing before i + 1 is A[i] times the product of the entries
appearing before i. We can compute all products of entries before i with n − 1 multiplications, and
all products of entries after i with n − 1 multiplications, and store these values in an array of prefix
products, and an array of suffix products. The desired result then is the maximum prefix-suffix
product. A slightly more space efficient approach is to build the suffix product array and then
iterate forward through the array, using a single variable to compute the prefix products. This
prefix product is multiplied with the corresponding suffix product and the maximum prefix-suffix
product is updated if required.

public static int findBiggestProductNMinusOneProduct(List<Integer> A) {
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// Builds suffix products.

int product = 1;

List<Integer> suffixProducts

= new ArrayList <>(Collections.nCopies(A.size(), 0));

for (int i = A.size() - 1; i >= 0; --i) {

product *= A.get(i);

suffixProducts.set(i, product);

}

// Finds the biggest product of (n - 1) numbers.

int prefixProduct = 1;

int maxProduct = Integer.MIN_VALUE;

for (int i = 0; i < A.size(); ++i) {

int suffixProduct = i + 1 < A.size() ? suffixProducts.get(i + 1) : 1;

maxProduct = Math.max(maxProduct , prefixProduct * suffixProduct);

prefixProduct *= A.get(i);

}

return maxProduct;

}

The time complexity is O(n); the space complexity is O(n), since the solution uses a single array of
length n.

We now solve this problem in O(n) time and O(1) additional storage. The insight comes from
the fact that if there are no negative entries, the maximum product comes from using all but the
smallest element. (Note that this result is correct if the number of 0 entries is zero, one, or more.)

If the number of negative entries is odd, regardless of how many 0 entries and positive entries,
the maximum product uses all entries except for the negative entry with the smallest absolute value,
i.e., the least negative entry.

Going further, if the number of negative entries is even, the maximum product again uses all
but the smallest nonnegative element, assuming the number of nonnegative entries is greater than
zero. (This is correct, even in the presence of 0 entries.)

If the number of negative entries is even, and there are no nonnegative entries, the result must
be negative. Since we want the largest product, we leave out the entry whose magnitude is largest,
i.e., the greatest negative entry.

This analysis yields a two-stage algorithm. First, determine the applicable scenario, e.g., are
there an even number of negative entries? Consequently, perform the actual multiplication to get
the result.

public static int findBiggestNMinusOneProduct(List<Integer> A) {

int leastNonnegativeIdx = -1;

int numberOfNegatives = 0, greatestNegativeIdx = -1, leastNegativeIdx = -1;

// Identify the least negative , greatest negative , and least nonnegative

// entries.

for (int i = 0; i < A.size(); ++i) {

if (A.get(i) < 0) {

++numberOfNegatives;

if (leastNegativeIdx == -1 || A.get(leastNegativeIdx) < A.get(i)) {

leastNegativeIdx = i;

}

if (greatestNegativeIdx == -1
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|| A.get(i) < A.get(greatestNegativeIdx)) {

greatestNegativeIdx = i;

}

} else if (A.get(i) >= 0) {

if (leastNonnegativeIdx == -1

|| A.get(i) < A.get(leastNonnegativeIdx)) {

leastNonnegativeIdx = i;

}

}

}

int product = 1;

int IdxToSkip = (numberOfNegatives % 2) != 0

? leastNegativeIdx

// Check if there are any nonnegative entry.

: (leastNonnegativeIdx != -1 ? leastNonnegativeIdx

: greatestNegativeIdx);

for (int i = 0; i < A.size(); ++i) {

if (i != IdxToSkip) {

product *= A.get(i);

}

}

return product;

}

The algorithm performs a traversal of the array, with a constant amount of computation per entry,
a nested conditional, followed by another traversal of the array, with a constant amount of com-
putation per entry. Hence, the time complexity is O(n) + O(1) + O(n) = O(n). The additional space
complexity is O(1), corresponding to the local variables.

Variant: Let A be as above. Compute an array B where B[i] is the product of all elements in A except
A[i]. You cannot use division. Your time complexity should be O(n), and you can only use O(1)
additional space.

Variant: Let A be as above. Compute the maximum over the product of all triples of distinct
elements of A.

100



Part IV

Notation and Index



Notation

To speak about notation as the only way that you can guarantee
structure of course is already very suspect.

— E. S. Parker

We use the following convention for symbols, unless the surrounding text specifies otherwise:
A k-dimensional array
L linked list or doubly linked list
S set
T tree
G graph
V set of vertices of a graph
E set of edges of a graph

Symbolism Meaning
(dk−1 . . . d0)r radix-r representation of a number, e.g., (1011)2

logb x logarithm of x to the base b; if b is not specified, b = 2
|S| cardinality of set S
S \ T set difference, i.e., S ∩ T′, sometimes written as S − T
|x| absolute value of x
bxc greatest integer less than or equal to x
dxe smallest integer greater than or equal to x
〈a0, a1, . . . , an−1〉 sequence of n elements∑

R(k) f (k) sum of all f (k) such that relation R(k) is true
minR(k) f (k) minimum of all f (k) such that relation R(k) is true
maxR(k) f (k) maximum of all f (k) such that relation R(k) is true∑b

k=a f (k) shorthand for
∑

a≤k≤b f (k)
{a | R(a)} set of all a such that the relation R(a) = true
[l, r] closed interval: {x | l ≤ x ≤ r}
[l, r) left-closed, right-open interval: {x | l ≤ x < r}
{a, b, . . . } well-defined collection of elements, i.e., a set
Ai or A[i] the ith element of one-dimensional array A
A[i, j] subarray of one-dimensional array A consisting of elements at in-

dices i to j inclusive
A[i][ j] the element in ith row and jth column of 2D array A
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A[i1, i2][ j1, j2] 2D subarray of 2D array A consisting of elements from i1th to i2th
rows and from j1th to j2th column, inclusive(n

k
)

binomial coefficient: number of ways of choosing k elements from
a set of n items

n! n-factorial, the product of the integers from 1 to n, inclusive
O

(
f (n)

)
big-oh complexity of f (n), asymptotic upper bound

x mod y mod function
x ⊕ y bitwise-XOR function
x ≈ y x is approximately equal to y
null pointer value reserved for indicating that the pointer does not refer

to a valid address
∅ empty set
∞ infinity: Informally, a number larger than any number.
x� y much less than
x� y much greater than
⇒ logical implication
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Index of Terms

2D array, 68, 69, 71, 80, 102, 103
2D subarray, 103
O(1) space, 12, 26, 31, 50, 68, 74, 75, 99, 100

adjacency list, 77, 77
adjacency matrix, 77, 77
amortized, 22
amortized analysis, 44
approximation algorithm, 97
array, 5, 7, 7, 9, 17, 22, 40, 42–44, 49, 50, 52, 53, 57, 68, 74,

80, 86, 98–100
bit, see bit array

BFS, 80, 80
binary search, 39, 40, 42, 50, 53, 73
binary search tree, see BST
binary tree, 28–30, 30, 31–35, 57, 59, 78

complete, 31, 35
full, 31
height of, 31–34
left-skewed, 31
perfect, 31
right-skewed, 31
skewed, 31

binomial coefficient, 103
bit array, 65
breadth-first search, see BFS
BST, 44, 45, 50, 57, 57, 59–61, 69

height of, 57
red-black tree, 57

caching, 86
case analysis, 97
central processing unit, see CPU
chessboard, 63

mutilated, 62
child, 31, 78
closed interval, 102
coloring, 80
complete binary tree, 31, 31, 32, 35

height of, 31
connected component, 77, 77
connected directed graph, 77
connected undirected graph, 77

connected vertices, 77, 77
constraint, 59
counting sort, 50
CPU, 86

DAG, 76, 76
database, 86
deadlock, 81
decomposition, 85
deletion

from doubly linked lists, 26
from hash tables, 44
from heap, 35
from max-heaps, 35

depth
of a node in a binary search tree, 60, 61
of a node in a binary tree, 31, 31

depth-first search, see DFS
deque, 26
dequeue, 26, 29
DFS, 80, 80
directed acyclic graph, see DAG, 77
directed graph, 76, see also directed acyclic graph, see also

graph, 76, 77
connected directed graph, 77
weakly connected graph, 77

discovery time, 80
distributed memory, 81
distribution

of the numbers, 86
divide-and-conquer, 62, 63, 66, 68
divisor

greatest common divisor, 97
double-ended queue, see deque
doubly linked list, 17, 17, 26, 102

deletion from, 26
DP, 66, 66, 68, 69
dynamic programming, see DP

edge, 76–78, 80
edge set, 78
elimination, 40
enqueue, 26, 29, 61
extract-max, 35
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extract-min, 38

Fibonacci number, 66
finishing time, 80
first-in, first-out, 22, see also queue, 26
free tree, 78, 78
full binary tree, 31, 31
function

recursive, 62

garbage collection, 81
GCD, 97, 97
graph, 76, see also directed graph, 76, 77, 78, see also tree
graph modeling, 76
graphical user interfaces, see GUI
greatest common divisor, see GCD
greedy, 72
GUI, 81

hash code, 44, 44, 45
hash function, 44, 45
hash table, 13, 20, 33, 44, 44, 45, 46, 69, 83

deletion from, 44
lookup of, 44

head
of a deque, 26
of a linked list, 17, 20

heap, 35, 50
deletion from, 35
max-heap, 35, 50
min-heap, 35, 50

heapsort, 50
height

of a binary search tree, 57
of a binary tree, 31, 31, 32–34
of a BST, 57
of a complete binary tree, 31
of a event rectangle, 54
of a perfect binary tree, 31
of a stack, 34

I/O, 37
in-place sort, 50
invariant, 73, 73
inverted index, 52

last-in, first-out, 22, see also stack
leaf, 31
left child, 30, 31, 33, 59, 78
left subtree, 30–32, 34, 57, 59, 60
left-closed, right-open interval, 102
level

of a tree, 31
linked list, 17, 17, 102
list, see also singly linked list, 17, 20, 22, 26, 44, 50
livelock, 82
load

of a hash table, 44
lock

deadlock, 81
livelock, 82

matching
of strings, 13

matrix, 70, 77
adjacency, 77
multiplication of, 81

matrix multiplication, 81
max-heap, 35, 50

deletion from, 35
merge sort, 38, 50
min-heap, 35, 37, 38, 50, 83, 86
multicore, 81
mutilated chessboard, 62

network, 81
network bandwidth, 86

network bandwidth, 86
node, 28–34, 45, 57, 59–61, 78

ordered tree, 78, 78
OS, 85
overflow

integer, 40
overlapping intervals, 55

parallel algorithm, 97
parallelism, 81, 82, 86
parent-child relationship, 31, 78
path, 76
perfect binary tree, 31, 31, 32

height of, 31
permutation

random, 12
power set, 63, 63
prime, 57
primitive type, 2

queue, 22, 26, 26, 28, 35, 60
quicksort, 9, 50, 68, 69

race, 81
radix sort, 50
RAM, 86
random access memory, see RAM
random permutation, 12
randomization, 44
reachable, 76, 80
recursion, 62, 63, 97
recursive function, 62
red-black tree, 57
reduction, 16
rehashing, 44
right child, 30, 31, 33, 59, 60, 78
right subtree, 30–32, 34, 57, 59, 60
rolling hash, 45
root, 30, 31, 33, 34, 59, 60, 78
rooted tree, 78, 78
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shared memory, 81, 81
Short Message Service, see SMS
signature, 87
singly linked list, 17, 17, 20
sinks, 76
SMS, 83
sorting, 9, 40, 50, 50, 54, 86

counting sort, 50
heapsort, 50
in-place, 50
in-place sort, 50
merge sort, 38, 50
quicksort, 9, 50, 68, 69
radix sort, 50
stable, 50
stable sort, 50

sources, 76
spanning tree, 78, see also minimum spanning tree
stable sort, 50
stack, 22, 22, 23, 26

height of, 34
starvation, 81
string, 13, 13, 14, 15, 45, 46
string matching, 13
strongly connected directed graph, 77
subarray, 9, 12, 43, 67–69
subtree, 31, 34, 59–61

tail
of a deque, 26
of a linked list, 17, 20

topological ordering, 76
tree, 78, 78

binary, see binary tree
free, 78
ordered, 78
red-black, 57
rooted, 78

triomino, 62, 63

UI, 81
undirected graph, 77, 77, 78

vertex, 76, 76, 77, 78, 80, 102
connected, 77

weakly connected graph, 77
width, 2
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